data_duplicated {datawizard} | R Documentation |
Extract all duplicates
Description
Extract all duplicates, for visual inspection.
Note that it also contains the first occurrence of future
duplicates, unlike duplicated()
or dplyr::distinct()
). Also
contains an additional column reporting the number of missing
values for that row, to help in the decision-making when
selecting which duplicates to keep.
Usage
data_duplicated(
data,
select = NULL,
exclude = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE
)
Arguments
data |
A data frame.
|
select |
Variables that will be included when performing the required
tasks. Can be either
a variable specified as a literal variable name (e.g., column_name ),
a string with the variable name (e.g., "column_name" ), or a character
vector of variable names (e.g., c("col1", "col2", "col3") ),
a formula with variable names (e.g., ~column_1 + column_2 ),
a vector of positive integers, giving the positions counting from the left
(e.g. 1 or c(1, 3, 5) ),
a vector of negative integers, giving the positions counting from the
right (e.g., -1 or -1:-3 ),
one of the following select-helpers: starts_with() , ends_with() ,
contains() , a range using : or regex("") . starts_with() ,
ends_with() , and contains() accept several patterns, e.g
starts_with("Sep", "Petal") .
or a function testing for logical conditions, e.g. is.numeric() (or
is.numeric ), or any user-defined function that selects the variables
for which the function returns TRUE (like: foo <- function(x) mean(x) > 3 ),
ranges specified via literal variable names, select-helpers (except
regex() ) and (user-defined) functions can be negated, i.e. return
non-matching elements, when prefixed with a - , e.g. -ends_with("") ,
-is.numeric or -(Sepal.Width:Petal.Length) . Note: Negation means
that matches are excluded, and thus, the exclude argument can be
used alternatively. For instance, select=-ends_with("Length") (with
- ) is equivalent to exclude=ends_with("Length") (no - ). In case
negation should not work as expected, use the exclude argument instead.
If NULL , selects all columns. Patterns that found no matches are silently
ignored, e.g. extract_column_names(iris, select = c("Species", "Test"))
will just return "Species" .
|
exclude |
See select , however, column names matched by the pattern
from exclude will be excluded instead of selected. If NULL (the default),
excludes no columns.
|
ignore_case |
Logical, if TRUE and when one of the select-helpers or
a regular expression is used in select , ignores lower/upper case in the
search pattern when matching against variable names.
|
regex |
Logical, if TRUE , the search pattern from select will be
treated as regular expression. When regex = TRUE , select must be a
character string (or a variable containing a character string) and is not
allowed to be one of the supported select-helpers or a character vector
of length > 1. regex = TRUE is comparable to using one of the two
select-helpers, select = contains("") or select = regex("") , however,
since the select-helpers may not work when called from inside other
functions (see 'Details'), this argument may be used as workaround.
|
verbose |
Toggle warnings.
|
Value
A dataframe, containing all duplicates.
See Also
data_unique()
Examples
df1 <- data.frame(
id = c(1, 2, 3, 1, 3),
year = c(2022, 2022, 2022, 2022, 2000),
item1 = c(NA, 1, 1, 2, 3),
item2 = c(NA, 1, 1, 2, 3),
item3 = c(NA, 1, 1, 2, 3)
)
data_duplicated(df1, select = "id")
data_duplicated(df1, select = c("id", "year"))
# Filter to exclude duplicates
df2 <- df1[-c(1, 5), ]
df2
[Package
datawizard version 0.12.2
Index]