assign_labels {datawizard} | R Documentation |
Assign variable and value labels
Description
Assign variable and values labels to a variable or variables in a data frame.
Labels are stored as attributes ("label"
for variable labels and "labels"
)
for value labels.
Usage
assign_labels(x, ...)
## S3 method for class 'numeric'
assign_labels(x, variable = NULL, values = NULL, ...)
## S3 method for class 'data.frame'
assign_labels(
x,
select = NULL,
exclude = NULL,
values = NULL,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...
)
Arguments
x |
A data frame, factor or vector.
|
... |
Currently not used.
|
variable |
The variable label as string.
|
values |
The value labels as (named) character vector. If values is
not a named vector, the length of labels must be equal to the length of
unique values. For a named vector, the left-hand side (LHS) is the value in
x , the right-hand side (RHS) the associated value label. Non-matching
labels are omitted.
|
select |
Variables that will be included when performing the required
tasks. Can be either
a variable specified as a literal variable name (e.g., column_name ),
a string with the variable name (e.g., "column_name" ), or a character
vector of variable names (e.g., c("col1", "col2", "col3") ),
a formula with variable names (e.g., ~column_1 + column_2 ),
a vector of positive integers, giving the positions counting from the left
(e.g. 1 or c(1, 3, 5) ),
a vector of negative integers, giving the positions counting from the
right (e.g., -1 or -1:-3 ),
one of the following select-helpers: starts_with() , ends_with() ,
contains() , a range using : or regex("") . starts_with() ,
ends_with() , and contains() accept several patterns, e.g
starts_with("Sep", "Petal") .
or a function testing for logical conditions, e.g. is.numeric() (or
is.numeric ), or any user-defined function that selects the variables
for which the function returns TRUE (like: foo <- function(x) mean(x) > 3 ),
ranges specified via literal variable names, select-helpers (except
regex() ) and (user-defined) functions can be negated, i.e. return
non-matching elements, when prefixed with a - , e.g. -ends_with("") ,
-is.numeric or -(Sepal.Width:Petal.Length) . Note: Negation means
that matches are excluded, and thus, the exclude argument can be
used alternatively. For instance, select=-ends_with("Length") (with
- ) is equivalent to exclude=ends_with("Length") (no - ). In case
negation should not work as expected, use the exclude argument instead.
If NULL , selects all columns. Patterns that found no matches are silently
ignored, e.g. extract_column_names(iris, select = c("Species", "Test"))
will just return "Species" .
|
exclude |
See select , however, column names matched by the pattern
from exclude will be excluded instead of selected. If NULL (the default),
excludes no columns.
|
ignore_case |
Logical, if TRUE and when one of the select-helpers or
a regular expression is used in select , ignores lower/upper case in the
search pattern when matching against variable names.
|
regex |
Logical, if TRUE , the search pattern from select will be
treated as regular expression. When regex = TRUE , select must be a
character string (or a variable containing a character string) and is not
allowed to be one of the supported select-helpers or a character vector
of length > 1. regex = TRUE is comparable to using one of the two
select-helpers, select = contains("") or select = regex("") , however,
since the select-helpers may not work when called from inside other
functions (see 'Details'), this argument may be used as workaround.
|
verbose |
Toggle warnings.
|
Value
A labelled variable, or a data frame of labelled variables.
Selection of variables - the select
argument
For most functions that have a select
argument (including this function),
the complete input data frame is returned, even when select
only selects
a range of variables. That is, the function is only applied to those variables
that have a match in select
, while all other variables remain unchanged.
In other words: for this function, select
will not omit any non-included
variables, so that the returned data frame will include all variables
from the input data frame.
Examples
x <- 1:3
# labelling by providing required number of labels
assign_labels(
x,
variable = "My x",
values = c("one", "two", "three")
)
# labelling using named vectors
data(iris)
out <- assign_labels(
iris$Species,
variable = "Labelled Species",
values = c(`setosa` = "Spec1", `versicolor` = "Spec2", `virginica` = "Spec3")
)
str(out)
# data frame example
out <- assign_labels(
iris,
select = "Species",
variable = "Labelled Species",
values = c(`setosa` = "Spec1", `versicolor` = "Spec2", `virginica` = "Spec3")
)
str(out$Species)
# Partial labelling
x <- 1:5
assign_labels(
x,
variable = "My x",
values = c(`1` = "lowest", `5` = "highest")
)
[Package
datawizard version 0.12.2
Index]