recode_values {datawizard} | R Documentation |
Recode old values of variables into new values
Description
This functions recodes old values into new values and can be used to to recode numeric or character vectors, or factors.
Usage
recode_values(x, ...)
## S3 method for class 'numeric'
recode_values(
x,
recode = NULL,
default = NULL,
preserve_na = TRUE,
verbose = TRUE,
...
)
## S3 method for class 'data.frame'
recode_values(
x,
select = NULL,
exclude = NULL,
recode = NULL,
default = NULL,
preserve_na = TRUE,
append = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...
)
change_code(
x,
select = NULL,
exclude = NULL,
recode = NULL,
default = NULL,
preserve_na = TRUE,
append = FALSE,
ignore_case = FALSE,
regex = FALSE,
verbose = TRUE,
...
)
Arguments
x |
A data frame, numeric or character vector, or factor. |
... |
not used. |
recode |
A list of named vectors, which indicate the recode pairs.
The names of the list-elements (i.e. the left-hand side) represent the
new values, while the values of the list-elements indicate the original
(old) values that should be replaced. When recoding numeric vectors,
element names have to be surrounded in backticks. For example,
|
default |
Defines the default value for all values that have
no match in the recode-pairs. Note that, if |
preserve_na |
Logical, if |
verbose |
Toggle warnings. |
select |
Variables that will be included when performing the required tasks. Can be either
If |
exclude |
See |
append |
Logical or string. If |
ignore_case |
Logical, if |
regex |
Logical, if |
Details
This section describes the pattern of the recode
arguments, which also
provides some shortcuts, in particular when recoding numeric values.
Single values
Single values either need to be wrapped in backticks (in case of numeric values) or "as is" (for character or factor levels). Example:
recode=list(`0`=1,`1`=2)
would recode 1 into 0, and 2 into 1. For factors or character vectors, an example is:recode=list(x="a",y="b")
(recode "a" into "x" and "b" into "y").Multiple values
Multiple values that should be recoded into a new value can be separated with comma. Example:
recode=list(`1`=c(1,4),`2`=c(2,3))
would recode the values 1 and 4 into 1, and 2 and 3 into 2. It is also possible to define the old values as a character string, like:recode=list(`1`="1,4",`2`="2,3")
For factors or character vectors, an example is:recode=list(x=c("a","b"),y=c("c","d"))
.Value range
Numeric value ranges can be defined using the
:
. Example:recode=list(`1`=1:3,`2`=4:6)
would recode all values from 1 to 3 into 1, and 4 to 6 into 2.-
min
andmax
placeholder to use the minimum or maximum value of the (numeric) variable. Useful, e.g., when recoding ranges of values. Example:
recode=list(`1`="min:10",`2`="11:max")
. -
default
valuesThe
default
argument defines the default value for all values that have no match in the recode-pairs. For example,recode=list(`1`=c(1,2),`2`=c(3,4)), default=9
would recode values 1 and 2 into 1, 3 and 4 into 2, and all other values into 9. Ifpreserve_na
is set toFALSE
,NA
(missing values) will also be recoded into the specified default value. Reversing and rescaling
Value
x
, where old values are replaced by new values.
Selection of variables - the select
argument
For most functions that have a select
argument (including this function),
the complete input data frame is returned, even when select
only selects
a range of variables. That is, the function is only applied to those variables
that have a match in select
, while all other variables remain unchanged.
In other words: for this function, select
will not omit any non-included
variables, so that the returned data frame will include all variables
from the input data frame.
Note
You can use options(data_recode_pattern = "old=new")
to switch the
behaviour of the recode
-argument, i.e. recode-pairs are now following the
pattern old values = new values
, e.g. if getOption("data_recode_pattern")
is set to "old=new"
, then recode(`1`=0)
would recode all 1 into 0.
The default for recode(`1`=0)
is to recode all 0 into 1.
See Also
Functions to rename stuff:
data_rename()
,data_rename_rows()
,data_addprefix()
,data_addsuffix()
Functions to reorder or remove columns:
data_reorder()
,data_relocate()
,data_remove()
Functions to reshape, pivot or rotate data frames:
data_to_long()
,data_to_wide()
,data_rotate()
Functions to recode data:
rescale()
,reverse()
,categorize()
,recode_values()
,slide()
Functions to standardize, normalize, rank-transform:
center()
,standardize()
,normalize()
,ranktransform()
,winsorize()
Split and merge data frames:
data_partition()
,data_merge()
Functions to find or select columns:
data_select()
,extract_column_names()
Functions to filter rows:
data_match()
,data_filter()
Examples
# numeric ----------
set.seed(123)
x <- sample(c(1:4, NA), 15, TRUE)
table(x, useNA = "always")
out <- recode_values(x, list(`0` = 1, `1` = 2:3, `2` = 4))
out
table(out, useNA = "always")
# to recode NA values, set preserve_na to FALSE
out <- recode_values(
x,
list(`0` = 1, `1` = 2:3, `2` = 4, `9` = NA),
preserve_na = FALSE
)
out
table(out, useNA = "always")
# preserve na ----------
out <- recode_values(x, list(`0` = 1, `1` = 2:3), default = 77)
out
table(out, useNA = "always")
# recode na into default ----------
out <- recode_values(
x,
list(`0` = 1, `1` = 2:3),
default = 77,
preserve_na = FALSE
)
out
table(out, useNA = "always")
# factors (character vectors are similar) ----------
set.seed(123)
x <- as.factor(sample(c("a", "b", "c"), 15, TRUE))
table(x)
out <- recode_values(x, list(x = "a", y = c("b", "c")))
out
table(out)
out <- recode_values(x, list(x = "a", y = "b", z = "c"))
out
table(out)
out <- recode_values(x, list(y = "b,c"), default = 77)
# same as
# recode_values(x, list(y = c("b", "c")), default = 77)
out
table(out)
# data frames ----------
set.seed(123)
d <- data.frame(
x = sample(c(1:4, NA), 12, TRUE),
y = as.factor(sample(c("a", "b", "c"), 12, TRUE)),
stringsAsFactors = FALSE
)
recode_values(
d,
recode = list(`0` = 1, `1` = 2:3, `2` = 4, x = "a", y = c("b", "c")),
append = TRUE
)
# switch recode pattern to "old=new" ----------
options(data_recode_pattern = "old=new")
# numeric
set.seed(123)
x <- sample(c(1:4, NA), 15, TRUE)
table(x, useNA = "always")
out <- recode_values(x, list(`1` = 0, `2:3` = 1, `4` = 2))
table(out, useNA = "always")
# factors (character vectors are similar)
set.seed(123)
x <- as.factor(sample(c("a", "b", "c"), 15, TRUE))
table(x)
out <- recode_values(x, list(a = "x", `b, c` = "y"))
table(out)
# reset options
options(data_recode_pattern = NULL)