A C D E F G H I J K L M N O P R S T U V W misc
acc_distributions | Plots and checks for distributions |
acc_distributions_loc | Plots and checks for distributions - Location |
acc_distributions_loc_ecdf | Plots and checks for distributions - Location, ECDF |
acc_distributions_only | Plots and checks for distributions - only |
acc_distributions_only_ecdf | Plots and checks for distributions - only, but with ecdf |
acc_distributions_prop | Plots and checks for distributions - Proportion |
acc_end_digits | Extension of acc_shape_or_scale to examine uniform distributions of end digits |
acc_loess | Smoothes and plots adjusted longitudinal measurements |
acc_margins | Estimate marginal means, see emmeans::emmeans |
acc_multivariate_outlier | Calculate and plot Mahalanobis distances |
acc_robust_univariate_outlier | Identify univariate outliers by four different approaches |
acc_shape_or_scale | Compare observed versus expected distributions |
acc_univariate_outlier | Identify univariate outliers by four different approaches |
acc_varcomp | Estimates variance components |
as.data.frame.dataquieR_resultset | Convert a full 'dataquieR' report to a 'data.frame' |
as.list.dataquieR_resultset | Convert a full 'dataquieR' report to a 'list' |
ASSOCIATION_DIRECTION | Cross-item level metadata attribute name |
ASSOCIATION_FORM | Cross-item level metadata attribute name |
ASSOCIATION_METRIC | Cross-item level metadata attribute name |
ASSOCIATION_RANGE | Cross-item level metadata attribute name |
cause_label_df | Data frame with labels for missing- and jump-codes |
CHECK_ID | Cross-item level metadata attribute name |
CHECK_LABEL | Cross-item level metadata attribute name |
check_table | Data frame with contradiction rules |
CODE_CLASS | Data frame with labels for missing- and jump-codes |
CODE_INTERPRET | Data frame with labels for missing- and jump-codes |
CODE_LABEL | Data frame with labels for missing- and jump-codes |
CODE_VALUE | Data frame with labels for missing- and jump-codes |
COMPATIBILITY | Requirement levels of certain metadata columns |
com_item_missingness | Summarize missingness columnwise (in variable) |
com_qualified_item_missingness | Compute Indicators for Qualified Item Missingness |
com_qualified_segment_missingness | Compute Indicators for Qualified Segment Missingness |
com_segment_missingness | Summarizes missingness for individuals in specific segments |
com_unit_missingness | Counts all individuals with no measurements at all |
CONTRADICTIONS | Well-known metadata column names, names of metadata columns |
contradiction_functions_descriptions | description of the contradiction functions |
CONTRADICTION_TERM | Cross-item level metadata attribute name |
CONTRADICTION_TYPE | Cross-item level metadata attribute name |
con_contradictions | Checks user-defined contradictions in study data |
con_contradictions_redcap | Checks user-defined contradictions in study data |
con_inadmissible_categorical | Detects variable levels not specified in metadata |
con_limit_deviations | Detects variable values exceeding limits defined in metadata |
CO_VARS | Well-known metadata column names, names of metadata columns |
dataquieR_result | Print a dataquieR result returned by dq_report2 |
dataquieR_resultset | Internal constructor for the internal class dataquieR_resultset. |
dataquieR_resultset_verify | Verify an object of class dataquieR_resultset |
DATA_ENTRY_TYPE | Well-known metadata column names, names of metadata columns |
DATA_PREPARATION | Cross-item level metadata attribute name |
DATA_TYPE | Well-known metadata column names, names of metadata columns |
DATA_TYPES | Data Types |
DATA_TYPES_OF_R_TYPE | All available data types, mapped from their respective R types |
DATETIME | Data Types |
datetime | Data Types |
DECIMALS | Well-known metadata column names, names of metadata columns |
des_scatterplot_matrix | Compute Pairwise Correlations |
des_summary | Compute Descriptive Statistics |
DETECTION_LIMITS | Well-known metadata column names, names of metadata columns |
DETECTION_LIMIT_LOW | Well-known metadata column names, names of metadata columns |
DETECTION_LIMIT_UP | Well-known metadata column names, names of metadata columns |
DF_ELEMENT_COUNT | Data frame level metadata attribute name |
DF_ID_REF_TABLE | Data frame level metadata attribute name |
DF_ID_VARS | Data frame level metadata attribute name |
DF_NAME | Data frame level metadata attribute name |
DF_RECORD_CHECK | Data frame level metadata attribute name |
DF_RECORD_COUNT | Data frame level metadata attribute name |
DF_UNIQUE_ID | Data frame level metadata attribute name |
DF_UNIQUE_ROWS | Data frame level metadata attribute name |
dim.dataquieR_resultset2 | Get the dimensions of a 'dq_report2' result |
dimensions | Names of DQ dimensions |
dimnames.dataquieR_resultset2 | Names of a 'dataquieR' report object (v2.0) |
dims | Dimension Titles for Prefixes |
DISTRIBUTION | Well-known metadata column names, names of metadata columns |
DISTRIBUTIONS | All available probability distributions for acc_shape_or_scale |
dq_report | Generate a full DQ report |
dq_report2 | Generate a full DQ report, v2 |
dq_report_by | Generate a stratified full DQ report |
END_DIGIT_CHECK | Well-known metadata column names, names of metadata columns |
enum | Data Types |
FLOAT | Data Types |
float | Data Types |
GOLDSTANDARD | Cross-item level metadata attribute name |
GRADING_RULESET | Well-known metadata column names, names of metadata columns |
GROUP_VAR_DEVICE | Well-known metadata column names, names of metadata columns |
GROUP_VAR_OBSERVER | Well-known metadata column names, names of metadata columns |
HARD_LIMITS | Well-known metadata column names, names of metadata columns |
HARD_LIMIT_LOW | Well-known metadata column names, names of metadata columns |
HARD_LIMIT_UP | Well-known metadata column names, names of metadata columns |
html_dependency_clipboard | HTML Dependency for report headers in 'clipboard' |
html_dependency_dataquieR | HTML Dependency for 'dataquieR' |
html_dependency_report_dt | HTML Dependency for report headers in 'DT::datatable' |
html_dependency_tippy | HTML Dependency for 'tippy' |
html_dependency_vert_dt | HTML Dependency for vertical headers in 'DT::datatable' |
INCL_HARD_LIMIT_LOW | Well-known metadata column names, names of metadata columns |
INCL_HARD_LIMIT_UP | Well-known metadata column names, names of metadata columns |
INCL_LOCATION_LIMIT_LOW | Well-known metadata column names, names of metadata columns |
INCL_LOCATION_LIMIT_UP | Well-known metadata column names, names of metadata columns |
INCL_PROPORTION_LIMIT_LOW | Well-known metadata column names, names of metadata columns |
INCL_PROPORTION_LIMIT_UP | Well-known metadata column names, names of metadata columns |
INCL_SOFT_LIMIT_LOW | Well-known metadata column names, names of metadata columns |
INCL_SOFT_LIMIT_UP | Well-known metadata column names, names of metadata columns |
INTEGER | Data Types |
integer | Data Types |
int_all_datastructure_dataframe | Wrapper function to check for studies data structure |
int_all_datastructure_segment | Wrapper function to check for segment data structure |
int_datatype_matrix | Check declared data types of metadata in study data |
int_duplicate_content | Check for duplicated content |
int_duplicate_ids | Check for duplicated IDs |
int_part_vars_structure | Detect Expected Observations |
int_sts_element_dataframe | Determine missing and/or superfluous data elements |
int_sts_element_segment | Checks for element set |
int_unexp_elements | Check for unexpected data element count |
int_unexp_records_dataframe | Check for unexpected data record count at the data frame level |
int_unexp_records_segment | Check for unexpected data record count within segments |
int_unexp_records_set | Check for unexpected data record set |
JUMP_LIST | Well-known metadata column names, names of metadata columns |
KEY_DATETIME | Well-known metadata column names, names of metadata columns |
KEY_DEVICE | Well-known metadata column names, names of metadata columns |
KEY_OBSERVER | Well-known metadata column names, names of metadata columns |
KEY_STUDY_SEGMENT | Well-known metadata column names, names of metadata columns |
LABEL | Well-known metadata column names, names of metadata columns |
LOCATION_LIMIT_LOW | Well-known metadata column names, names of metadata columns |
LOCATION_LIMIT_UP | Well-known metadata column names, names of metadata columns |
LOCATION_METRIC | Well-known metadata column names, names of metadata columns |
LOCATION_RANGE | Well-known metadata column names, names of metadata columns |
LONG_LABEL | Well-known metadata column names, names of metadata columns |
meta_data | Data frame with metadata about the study data on variable level |
meta_data_cross | Well known columns on the 'meta_data_cross-item' sheet |
meta_data_dataframe | Well known columns on the 'meta_data_dataframe' sheet |
meta_data_segment | Well known columns on the 'meta_data_segment' sheet |
MISSING_LIST | Well-known metadata column names, names of metadata columns |
MISSING_LIST_TABLE | Well-known metadata column names, names of metadata columns |
missing_matchtable | Data frame with labels for missing- and jump-codes |
MULTIVARIATE_OUTLIER_CHECKTYPE | Cross-item level metadata attribute name |
nres | return the number of result slots in a report |
numeric | Data Types |
N_RULES | Cross-item and item level metadata attribute name |
OPTIONAL | Requirement levels of certain metadata columns |
PART_VAR | Well-known metadata column names, names of metadata columns |
pipeline_recursive_result | Convert a pipeline result data frame to named encapsulated lists |
pipeline_vectorized | Call (nearly) one "Accuracy" function with many parameterizations at once automatically |
plot.dataquieR_summary | Plot a 'dataquieR' summary |
prep_add_cause_label_df | Convert missing codes in metadata format v1.0 and a missing-cause-table to v2.0 missing list / jump list assignments |
prep_add_data_frames | Add data frames to the pre-loaded / cache data frame environment |
prep_add_missing_codes | Insert missing codes for 'NA's based on rules |
prep_add_to_meta | Support function to augment metadata during data quality reporting |
prep_apply_coding | Re-Code labels with their respective codes according to the 'meta_data' |
prep_check_for_dataquieR_updates | Check for package updates |
prep_check_meta_data_dataframe | Verify and normalize metadata on data frame level |
prep_check_meta_data_segment | Verify and normalize metadata on segment level |
prep_check_meta_names | Checks the validity of metadata w.r.t. the provided column names |
prep_clean_labels | Support function to scan variable labels for applicability |
prep_combine_report_summaries | Combine two report summaries |
prep_create_meta | Support function to create data.frames of metadata |
prep_create_meta_data_file | Instantiate a new metadata file |
prep_datatype_from_data | Get data types from data |
prep_deparse_assignments | Convert two vectors from a code-value-table to a key-value list |
prep_dq_data_type_of | Get the dataquieR 'DATA_TYPE' of 'x' |
prep_expand_codes | Expand code labels across variables |
prep_extract_cause_label_df | Extract all missing/jump codes from metadata and export a cause-label-data-frame |
prep_extract_classes_by_functions | Extract old function based summary from data quality results |
prep_extract_summary | Extract summary from data quality results |
prep_extract_summary.dataquieR_result | Extract report summary from reports |
prep_extract_summary.dataquieR_resultset2 | Extract report summary from reports |
prep_get_data_frame | Read data from files/URLs |
prep_get_labels | Fetch a label for a variable based on its purpose |
prep_get_user_name | Return the logged-in User's Full Name |
prep_link_escape | Prepare a label as part of a link for 'RMD' files |
prep_list_dataframes | List Loaded Data Frames |
prep_load_folder_with_metadata | Pre-load a folder with named (usually more than) one table(s) |
prep_load_report | Load a 'dq_report2' |
prep_load_workbook_like_file | Pre-load a file with named (usually more than) one table(s) |
prep_map_labels | Support function to allocate labels to variables |
prep_merge_study_data | Merge a list of study data frames to one (sparse) study data frame |
prep_meta_data_v1_to_item_level_meta_data | Convert item-level metadata from v1.0 to v2.0 |
prep_min_obs_level | Support function to identify the levels of a process variable with minimum number of observations |
prep_pmap | Support function for a parallel 'pmap' |
prep_prepare_dataframes | Prepare and verify study data with metadata |
prep_purge_data_frame_cache | Clear data frame cache |
prep_render_pie_chart_from_summaryclasses_ggplot2 | Create a 'ggplot2' pie chart |
prep_render_pie_chart_from_summaryclasses_plotly | Create a 'plotly' pie chart |
prep_save_report | Save a 'dq_report2' |
prep_scalelevel_from_data_and_metadata | Heuristics to amend a SCALE_LEVEL column and a UNIT column in the metadata |
prep_study2meta | Guess a metadata data frame from study data. |
prep_summary_to_classes | Classify metrics from a report summary table |
prep_title_escape | Prepare a label as part of a title text for 'RMD' files |
prep_valuelabels_from_data | Get value labels from data |
print.dataquieR_result | Print a dataquieR result returned by dq_report2 |
print.dataquieR_resultset | Generate a RMarkdown-based report from a dataquieR report |
print.dataquieR_resultset2 | Generate a HTML-based report from a dataquieR report |
print.dataquieR_summary | Print a 'dataquieR' summary |
print.interval | print implementation for the class 'interval' |
print.ReportSummaryTable | print implementation for the class 'ReportSummaryTable' |
PROPORTION_LIMIT_LOW | Well-known metadata column names, names of metadata columns |
PROPORTION_LIMIT_UP | Well-known metadata column names, names of metadata columns |
PROPORTION_RANGE | Well-known metadata column names, names of metadata columns |
pro_applicability_matrix | Check applicability of DQ functions on study data |
rbind.ReportSummaryTable | Combine 'ReportSummaryTable' outputs |
RECODE | Well-known metadata column names, names of metadata columns |
RECOMMENDED | Requirement levels of certain metadata columns |
REL_VAL | Cross-item level metadata attribute name |
REQUIRED | Requirement levels of certain metadata columns |
resnames | Return names of result slots (e.g., 3rd dimension of dataquieR results) |
resnames.dataquieR_resultset2 | Return names of result slots (e.g., 3rd dimension of dataquieR results) |
SCALE_LEVEL | Well-known metadata column names, names of metadata columns |
SCALE_LEVELS | Scale Levels |
SEGMENT_ID_REF_TABLE | Segment level metadata attribute name |
SEGMENT_ID_TABLE | Deprecated segment level metadata attribute name |
SEGMENT_ID_VARS | Segment level metadata attribute name |
SEGMENT_MISS | Segment level metadata attribute name |
SEGMENT_PART_VARS | Segment level metadata attribute name |
SEGMENT_RECORD_CHECK | Segment level metadata attribute name |
SEGMENT_RECORD_COUNT | Segment level metadata attribute name |
SEGMENT_UNIQUE_ROWS | Segment level metadata attribute name |
set | Data Types |
SOFT_LIMITS | Well-known metadata column names, names of metadata columns |
SOFT_LIMIT_LOW | Well-known metadata column names, names of metadata columns |
SOFT_LIMIT_UP | Well-known metadata column names, names of metadata columns |
SPLIT_CHAR | Character used by default as a separator in metadata such as missing codes |
STRING | Data Types |
string | Data Types |
study_data | Data frame with the study data whose quality is being assessed |
STUDY_SEGMENT | Well-known metadata column names, names of metadata columns |
summary.dataquieR_resultset | Summarize a dataquieR report |
summary.dataquieR_resultset2 | Generate a report summary table |
TECHNICAL | Requirement levels of certain metadata columns |
TIME_VAR | Well-known metadata column names, names of metadata columns |
UNIT | Well-known metadata column names, names of metadata columns |
UNITS | Valid unit symbols according to 'units::valid_udunits()' |
UNIT_IS_COUNT | Is a unit a count according to 'units::valid_udunits()' |
UNIT_PREFIXES | Valid unit prefixes according to 'units::valid_udunits_prefixes()' |
UNIT_SOURCES | Maturity stage of a unit according to 'units::valid_udunits()' |
UNIVARIATE_OUTLIER_CHECKTYPE | Item level metadata attribute name |
UNKNOWN | Requirement levels of certain metadata columns |
util_compute_kurtosis | Compute Kurtosis |
util_compute_SE_skewness | Compute SE.Skewness |
util_compute_skewness | Compute the Skewness |
util_first_row_to_colnames | Move the first row of a data frame to its column names |
VALUE_LABELS | Well-known metadata column names, names of metadata columns |
VARATT_REQUIRE_LEVELS | Requirement levels of certain metadata columns |
variable | Data Types |
variable attribute | Well-known metadata column names, names of metadata columns |
variable list | Data Types |
variable roles | Variable roles can be one of the following: |
VARIABLE_LIST | Cross-item level metadata attribute name |
VARIABLE_ORDER | Well-known metadata column names, names of metadata columns |
VARIABLE_ROLE | Well-known metadata column names, names of metadata columns |
VARIABLE_ROLES | Variable roles can be one of the following: |
VAR_NAMES | Well-known metadata column names, names of metadata columns |
WELL_KNOWN_META_VARIABLE_NAMES | Well-known metadata column names, names of metadata columns |
[.dataquieR_resultset2 | Get a subset of a 'dataquieR' 'dq_report2' report |