con_contradictions_redcap {dataquieR} | R Documentation |
Checks user-defined contradictions in study data
Description
This approach considers a contradiction if impossible combinations of data are observed in one participant. For example, if age of a participant is recorded repeatedly the value of age is (unfortunately) not able to decline. Most cases of contradictions rest on comparison of two variables.
Important to note, each value that is used for comparison may represent a possible characteristic but the combination of these two values is considered to be impossible. The approach does not consider implausible or inadmissible values.
Usage
con_contradictions_redcap(
study_data,
meta_data,
label_col,
threshold_value,
meta_data_cross_item = "cross-item_level",
use_value_labels,
summarize_categories = FALSE
)
Arguments
study_data |
data.frame the data frame that contains the measurements |
meta_data |
data.frame the data frame that contains metadata attributes of study data |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
threshold_value |
numeric from=0 to=100. a numerical value ranging from 0-100 |
meta_data_cross_item |
data.frame contradiction rules table. Table defining contradictions. See details for its required structure. |
use_value_labels |
logical Deprecated in favor of DATA_PREPARATION.
If set to
|
summarize_categories |
logical Needs a column 'CONTRADICTION_TYPE' in
the |
Details
Algorithm of this implementation:
Remove missing codes from the study data (if defined in the metadata)
Remove measurements deviating from limits defined in the metadata
Assign label to levels of categorical variables (if applicable)
Apply contradiction checks (given as
REDCap
-like rules in a separate metadata table)Identification of measurements fulfilling contradiction rules. Therefore two output data frames are generated:
on the level of observation to flag each contradictory value combination, and
a summary table for each contradiction check.
A summary plot illustrating the number of contradictions is generated.
List function.
Value
If summarize_categories
is FALSE
:
A list with:
-
FlaggedStudyData
: The first output of the contradiction function is a data frame of similar dimension regarding the number of observations in the study data. In addition, for each applied check on the variables an additional column is added which flags observations with a contradiction given the applied check. -
SummaryData
: The second output summarizes this information into one data frame. This output can be used to provide an executive overview on the amount of contradictions. -
VariableGroupTable
: A subset ofSummaryData
used within the pipeline. -
SummaryPlot
: The third output visualizes summarized information ofSummaryData
.
If summarize_categories
is TRUE
, other objects are returned:
One per category named by that category (e.g. "Empirical") containing a
result for contradiction checks within that category only. Additionally, in the
slot all_checks
, a result as it would have been returned with
summarize_categories
set to FALSE
. Finally, a slot SummaryData
is
returned containing sums per Category and an according ggplot in
SummaryPlot
.
See Also
Examples
## Not run: # slow
load(system.file("extdata", "meta_data.RData", package = "dataquieR"))
load(system.file("extdata", "study_data.RData", package = "dataquieR"))
meta_data_cross_item <- prep_get_data_frame("meta_data_v2|cross-item_level")
label_col <- "LABEL"
threshold_value <- 1
con_contradictions_redcap(
study_data = study_data, meta_data = meta_data, label_col = label_col,
threshold_value = threshold_value, meta_data_cross_item = meta_data_cross_item
)
con_contradictions_redcap(
study_data = study_data, meta_data = meta_data, label_col = label_col,
threshold_value = threshold_value, meta_data_cross_item = meta_data_cross_item,
summarize_categories = TRUE
)
## End(Not run)