| prep_add_cause_label_df {dataquieR} | R Documentation | 
Convert missing codes in metadata format v1.0 and a missing-cause-table to v2.0 missing list / jump list assignments
Description
The function has to working modes. If replace_meta_data is TRUE, by
default, if cause_label_df contains a column
named resp_vars, then the missing/jump codes in
meta_data[, c(MISSING_CODES, JUMP_CODES)] will be overwritten, otherwise,
it will be labeled using the cause_label_df.
Usage
prep_add_cause_label_df(
  meta_data = "item_level",
  cause_label_df,
  label_col = VAR_NAMES,
  assume_consistent_codes = TRUE,
  replace_meta_data = ("resp_vars" %in% colnames(cause_label_df))
)
Arguments
meta_data | 
 data.frame the data frame that contains metadata attributes of study data.  | 
cause_label_df | 
 data.frame missing code table. If missing codes have labels the respective data frame can be specified here, see cause_label_df  | 
label_col | 
 variable attribute the name of the column in the metadata with labels of variables  | 
assume_consistent_codes | 
 logical if TRUE and no labels are given and the same missing/jump code is used for more than one variable, the labels assigned for this code will be the same for all variables.  | 
replace_meta_data | 
 logical if   | 
Details
If a column resp_vars exists, then rows with a value in resp_vars will
only be used for the corresponding variable.
Value
data.frame updated metadata including all the code labels in missing/jump lists