int_datatype_matrix {dataquieR} | R Documentation |
Check declared data types of metadata in study data
Description
Checks data types of the study data and for the data type declared in the metadata
Usage
int_datatype_matrix(
resp_vars = NULL,
study_data,
meta_data,
split_segments = FALSE,
label_col,
max_vars_per_plot = 20,
threshold_value = 0
)
Arguments
resp_vars |
variable the names of the measurement variables, if
missing or |
study_data |
data.frame the data frame that contains the measurements |
meta_data |
data.frame the data frame that contains metadata attributes of study data |
split_segments |
logical return one matrix per study segment |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
max_vars_per_plot |
integer from=0. The maximum number of variables per single plot. |
threshold_value |
numeric from=0 to=100. percentage failing
conversions allowed to still classify a
study variable convertible.
|
Details
This is a preparatory support function that compares study data with associated metadata. A prerequisite of this function is that the no. of columns in the study data complies with the no. of rows in the metadata.
For each study variable, the function searches for its data type declared in static metadata and returns a heatmap like matrix indicating data type mismatches in the study data.
List function.
Value
a list with:
-
SummaryTable
: data frame about the applicability of each indicator function (each function in a column). its integer values can be one of the following four categories: 0. Non-matching datatype, 1. Matching datatype, -
SummaryPlot
: ggplot2 heatmap plot, graphical representation ofSummaryTable
-
DataTypePlotList
: list of plots per (maybe artificial) segment -
ReportSummaryTable
: data frame underlyingSummaryPlot
Examples
## Not run:
load(system.file("extdata/meta_data.RData", package = "dataquieR"), envir =
environment())
load(system.file("extdata/study_data.RData", package = "dataquieR"), envir =
environment())
study_data$v00000 <- as.character(study_data$v00000)
study_data$v00002 <- as.character(study_data$v00002)
study_data$v00002[3] <- ""
appmatrix <- int_datatype_matrix(study_data = study_data,
meta_data = meta_data,
label_col = LABEL)
study_data$v00002[5] <- "X"
appmatrix <- int_datatype_matrix(study_data = study_data,
meta_data = meta_data,
label_col = LABEL)
appmatrix$ReportSummaryTable
## End(Not run)