acc_shape_or_scale {dataquieR} | R Documentation |
Compare observed versus expected distributions
Description
This implementation contrasts the empirical distribution of a measurement variables against assumed distributions. The approach is adapted from the idea of rootograms (Tukey 1977) which is also applicable for count data (Kleiber and Zeileis 2016).
Usage
acc_shape_or_scale(
resp_vars,
dist_col,
guess,
par1,
par2,
end_digits,
label_col,
study_data,
meta_data,
flip_mode = "noflip"
)
Arguments
resp_vars |
variable the name of the continuous measurement variable |
dist_col |
variable attribute the name of the variable attribute in meta_data that provides the expected distribution of a study variable |
guess |
logical estimate parameters |
par1 |
numeric first parameter of the distribution if applicable |
par2 |
numeric second parameter of the distribution if applicable |
end_digits |
logical internal use. check for end digits preferences |
label_col |
variable attribute the name of the column in the metadata with labels of variables |
study_data |
data.frame the data frame that contains the measurements |
meta_data |
data.frame the data frame that contains metadata attributes of study data |
flip_mode |
enum default | flip | noflip | auto. Should the plot be
in default orientation, flipped, not flipped or
auto-flipped. Not all options are always supported.
In general, this con be controlled by
setting the |
Value
a list with:
-
SummaryData
: data.frame underlying the plot -
SummaryPlot
: ggplot2 probability distribution plot -
SummaryTable
: data.frame with the columnsVariables
andFLG_acc_ud_shape
ALGORITHM OF THIS IMPLEMENTATION:
This implementation is restricted to data of type float or integer.
Missing codes are removed from resp_vars (if defined in the metadata)
The user must specify the column of the metadata containing probability distribution (currently only: normal, uniform, gamma)
Parameters of each distribution can be estimated from the data or are specified by the user
A histogram-like plot contrasts the empirical vs. the technical distribution