cophescan-package |
The 'cophescan' package. |
adjust_priors |
adjust_priors |
average_piks |
Average of priors: pnk, pak and pck |
average_piks_list |
Average of priors: pnk, pak and pck from list (memory intensive) |
average_posterior_prob |
Average of posterior probabilities: Hn, Ha and Hc |
average_posterior_prob_list |
Average of posterior probabilities: Hn, Ha and Hc from list (memory intensive) |
combine.bf |
combine.bf |
cophe.hyp.predict |
Predict cophescan hypothesis for tested associations |
cophe.multitrait |
Run cophescan on multiple traits at once |
cophe.single |
Bayesian cophescan analysis using Approximate Bayes Factors |
cophe.single.lbf |
cophe.single.lbf |
cophe.susie |
run 'cophe.susie' using susie to detect separate signals |
cophe.susie.lbf |
cophe.susie.lbf |
cophescan |
The 'cophescan' package. |
cophe_heatmap |
Heatmap of multi-trait cophescan results |
cophe_multi_trait_data |
Simulated multi-trait data |
cophe_plot |
cophe_plots showing the Ha and Hc of all traits and labelled above the specified threshold |
get_beta |
Extract beta and p-values of queried variant |
get_posterior_prob |
Calculation of the posterior prob of Hn, Ha and Hc |
Hc.cutoff.fdr |
Estimate the Hc.cutoff for the required FDR |
hypothesis.priors |
hypothesis.priors |
logd_alpha |
dnorm for alpha |
logd_beta |
dgamma for beta |
logd_gamma |
dgamma for gamma |
loglik |
Log likelihood calculation |
logpost |
Log posterior calculation |
logpriors |
Calculate log priors |
logsum |
logsum |
logsumexp |
Log sum |
metrop_run |
Run the hierarchical mcmc model to infer priors |
multitrait.simplify |
Simplifying the output obtained from 'cophe.multitrait', 'cophe.single' or 'cophe.susie' |
pars2pik |
Conversion of parameters alpha, beta and gamma to pnk, pak and pck |
pars_init |
Initiate parameters alpha, beta and gamma |
per.snp.priors |
per.snp.priors |
piks |
List of priors: pn, pa and pc over all iterations |
plot_trait_manhat |
Plot region Manhattan for a trait highlighting the queried variant |
posterior_prob |
List of posterior probabilities: Hn, Ha and Hc over all iterations |
prepare_plot_data |
Prepare data for plotting |
propose |
Proposal distribution |
run_metrop_priors |
Run the hierarchical Metropolis Hastings model to infer priors |
sample_alpha |
sample alpha |
sample_beta |
sample beta |
sample_gamma |
sample gamma |
summary.cophe |
print the summary of results from cophescan single or susie |
target |
Target distribution |