run_metrop_priors {cophescan} | R Documentation |
Run the hierarchical Metropolis Hastings model to infer priors
Description
Run the hierarchical Metropolis Hastings model to infer priors
Usage
run_metrop_priors(
multi.dat,
covar = FALSE,
covar_vec = NULL,
is_covar_categorical = FALSE,
nits = 10000,
thin = 1,
posterior = FALSE,
avg_pik = TRUE,
avg_posterior = TRUE,
pik = FALSE,
alpha_mean = -10,
alpha_sd = 0.5,
beta_shape = 2,
beta_scale = 2,
gamma_shape = 2,
gamma_scale = 2
)
Arguments
multi.dat |
matrix of bf values, rows=traits, named columns=("lBF.Ha","lBF.Hc","nsnps") |
covar |
whether to include covariates |
covar_vec |
vector of covariates |
is_covar_categorical |
only two categories supported (default=FALSE) - Experimental |
nits |
number of iterations |
thin |
burnin |
posterior |
default: FALSE, estimate posterior probabilities of the hypotheses |
avg_pik |
default: FALSE, estimate the average of the pik |
avg_posterior |
default: FALSE, estimate the average of the posterior probabilities of the hypotheses |
pik |
default: FALSE, inferred prior probabilities |
alpha_mean |
prior for the mean of alpha |
alpha_sd |
prior for the standard deviation of alpha |
beta_shape |
prior for the shape (gamma distibution) of beta |
beta_scale |
prior for the scale of beta |
gamma_shape |
prior for the shape (gamma distibution) of gamma |
gamma_scale |
prior for the scale of gamma |
Value
List containing the posterior distribution of the parameters alpha, beta, gamma (if covariate included) and the loglikelihood
if avg_posterior=TRUE matrix with average of all the posterior probabilities of Hn, Ha and Hc
if avg_pik=TRUE matrix with average of all the priors: pn, pa and pc
data, nits and thin contain the input data, number of iterations and burnin respectively specified for the hierarchical model