Generative Mechanism Estimation in Temporal Complex Networks


[Up] [Top]

Documentation for package ‘PAFit’ version 1.2.10

Help Pages

PAFit-package Generative Mechanism Estimation in Temporal Complex Networks
as.PAFit_net Converting an edgelist matrix to a PAFit_net object
coauthor.author_id A collaboration network between authors of papers in the field of complex networks with article time-stamps
coauthor.net A collaboration network between authors of papers in the field of complex networks with article time-stamps
coauthor.truetime A collaboration network between authors of papers in the field of complex networks with article time-stamps
ComplexNetCoauthor A collaboration network between authors of papers in the field of complex networks with article time-stamps
from_igraph Convert an igraph object to a PAFit_net object
from_networkDynamic Convert a networkDynamic object to a PAFit_net object
generate_BA Simulating networks from the generalized Barabasi-Albert model
generate_BB Simulating networks from the Bianconi-Barabasi model
generate_ER Simulating networks from the Erdos-Renyi model
generate_fit_only Simulating networks from the Caldarelli model
generate_net Simulating networks from preferential attachment and fitness mechanisms
generate_simulated_data_from_estimated_model Generating simulated data from a fitted model
get_statistics Getting summarized statistics from input data
graph_from_file Read file to a PAFit_net object
graph_to_file Write the graph in a PAFit_net object to file
Jeong Jeong's method for estimating the preferential attachment function
joint_estimate Joint inference of attachment function and node fitnesses
Newman Corrected Newman's method for estimating the preferential attachment function
only_A_estimate Estimating the attachment function in isolation by PAFit method
only_F_estimate Estimating node fitnesses in isolation
PAFit Generative Mechanism Estimation in Temporal Complex Networks
PAFit_data Getting summarized statistics from input data
PAFit_oneshot Estimating the nonparametric preferential attachment function from one single snapshot.
plot.Full_PAFit_result Plotting the estimated attachment function and node fitness
plot.PAFit_net Plot a 'PAFit_net' object
plot.PAFit_result Plotting the estimated attachment function and node fitness of a 'PAFit_result' object
plot.PA_result Plotting the estimated attachment function
plot_contribution Plotting contributions calculated from the observed data and contributions calculated from simulated data
print.CV_Data Printing simple information of the cross-validation data
print.CV_Result Printing simple information of the cross-validation result
print.Full_PAFit_result printing information on the estimation result
print.PAFit_data Printing simple information on the statistics of the network stored in a 'PAFit_data' object
print.PAFit_net Printing simple information of a 'PAFit_net' object
print.PAFit_result printing information on the estimation result stored in a 'PAFit_result' object
print.PA_result Printing information of the estimated attachment function
summary.CV_Data Printing summary information of the cross-validation data
summary.CV_Result Output summary information of the cross-validation result
summary.Full_PAFit_result Summary information on the estimation result
summary.PAFit_data Output summary information on the statistics of the network stored in a 'PAFit_data' object
summary.PAFit_net Summary information of a 'PAFit_net' object
summary.PAFit_result Output summary information on the estimation result stored in a 'PAFit_result' object
summary.PA_result Summary of the estimated attachment function
test_linear_PA Fitting various distributions to a degree vector
to_igraph Convert a PAFit_net object to an igraph object
to_networkDynamic Convert a PAFit_net object to a networkDynamic object