plot.Full_PAFit_result {PAFit}R Documentation

Plotting the estimated attachment function and node fitness

Description

This function plots the estimated attachment function A_k and node fitness eta_i, together with additional information such as their confidence intervals or the estimated attachment exponent (\alpha when assuming A_k = k^\alpha).

Usage

## S3 method for class 'Full_PAFit_result'
plot(x,
     net_stat                 ,
     true_f         = NULL    , plot             = "A"              , plot_bin   = TRUE ,
     line           = FALSE   , confidence       = TRUE             , high_deg_A = 1    ,
     high_deg_f     = 5       ,
     shade_point    = 0.5     , col_point        = "grey25"         , pch        = 16   ,
     shade_interval = 0.5     , col_interval     = "lightsteelblue" , label_x    = NULL , 
     label_y        = NULL    ,
     max_A          = NULL    , min_A            = NULL             , f_min      = NULL , 
     f_max          = NULL    , plot_true_degree = FALSE , 
     ...)

Arguments

x

An object of class Full_PAFit_result, containing the estimated results from only_A_estimate, only_F_estimate or joint_estimate.

net_stat

An object of class PAFit_data, containing the summerized statistics.

true_f

Vector. Optional parameter for the true value of node fitnesses (only available in simulated datasets). If this parameter is specified and plot == "true_f", a plot of estimated \eta versus true \eta is produced (after a suitable rescaling of the estimated f).

plot

String. Indicates which plot is produced.

  • If "A" then PA function is plotted.

  • If "f" then the histogram of estimated fitness is plotted.

  • If "true_f" then estimated fitness and true fitness are plotted together (require supplement of true fitness).

Default value is "A".

plot_bin

Logical. If TRUE then only the center of each bin is plotted. Default is TRUE.

line

Logical. Indicates whether to plot the line fitted from the log-linear model or not. Default value is TRUE.

confidence

Logical. Indicates whether to plot the confidence intervals of A_k and eta_i or not. If confidence == TRUE, a 2-sigma confidence interval will be plotted at each A_k and eta_i.

high_deg_A

Integer. The estimated PA function is plotted starting from high_deg_A. Default value is 1.

high_deg_f

Integer. If plot == "true_f", only nodes whose number of edges acquired is not less than high_deg_f are plotted. Default value is 5.

col_point

String. The name of the color of the points. Default value is "black".

shade_point

Numeric. Value between 0 and 1. This is the transparency level of the points. Default value is 0.5.

pch

Numeric. The plot symbol. Default value is 16.

shade_interval

Numeric. Value between 0 and 1. This is the transparency level of the confidence intervals. Default value is 0.5.

max_A

Numeric. Specify the maximum of the axis of PA.

min_A

Numeric. Specify the minimum of the axis of PA.

f_min

Numeric. Specify the minimum of the axis of fitness.

f_max

Numeric. Specify the maximum of the axis of fitness.

plot_true_degree

Logical. The degree of each node is plotted or not.

label_x

String. The label of x-axis.

label_y

String. The label of y-axis.

col_interval

String. The name of the color of the confidence intervals. Default value is "lightsteelblue".

...

Other arguments to pass to the underlying plotting function.

Value

Outputs the desired plot.

Author(s)

Thong Pham thongphamthe@gmail.com

Examples

## Since the runtime is long, we do not let this example run on CRAN
## Not run: 
library("PAFit")
set.seed(1)
# a network from Bianconi-Barabasi model
net        <- generate_BB(N        = 1000 , m             = 50 , 
                          num_seed = 100  , multiple_node = 100,
                          s        = 10)
net_stats  <- get_statistics(net)
result     <- joint_estimate(net, net_stats)
#plot A
plot(result , net_stats , plot = "A")
true_A     <- c(1,result$estimate_result$center_k[-1])
lines(result$estimate_result$center_k + 1 , true_A , col = "red") # true line
legend("topleft" , legend = "True function" , col = "red" , lty = 1 , bty = "n")
#plot true_f
plot(result, net_stats , net$fitness, plot = "true_f")

## End(Not run)

[Package PAFit version 1.2.10 Index]