plot_contribution {PAFit} | R Documentation |
Plotting contributions calculated from the observed data and contributions calculated from simulated data
Description
This function extracts from a Simulated_Data_From_Fitted_Model
object contributions of rich-get-richer and fit-get-richer effects calculated using simulated networks and plots these contributions versus the contributions calculated from the original observed network. See joint_estimate
for a description of how the contributions are calculated.
Usage
plot_contribution(simulated_object,
original_result,
which_plot = "PA",
y_label = ifelse("PA" == which_plot,
"Contribution of the rich-get-richer effect",
"Contribution of the fit-get-richer effect"),
legend_pos_x = 0.75,
legend_pos_y = 0.9)
Arguments
simulated_object |
an object of class |
original_result |
an object of class |
which_plot |
String. “PA": plots contributions of rich-get-richer effect, “fit": plots contribution of fit-get-richer effect. Default is “PA". |
y_label |
String. The label for y-axis. Default is "Contribution of rich-get-richer effect". |
legend_pos_x |
Numeric. The horizontal position, between (0,1), of the legend. Default value is |
legend_pos_y |
Numeric. The vertical position, between (0,1), of the legend. Default value is |
Value
Output a plot.
Author(s)
Thong Pham thongphamthe@gmail.com
References
1. Pham, T., Sheridan, P. & Shimodaira, H. (2015). PAFit: A Statistical Method for Measuring Preferential Attachment in Temporal Complex Networks. PLoS ONE 10(9): e0137796. (doi:10.1371/journal.pone.0137796).
2. Pham, T., Sheridan, P. & Shimodaira, H. (2016). Joint Estimation of Preferential Attachment and Node Fitness in Growing Complex Networks. Scientific Reports 6, Article number: 32558. (doi:10.1038/srep32558).
3. Pham, T., Sheridan, P. & Shimodaira, H. (2020). PAFit: An R Package for the Non-Parametric Estimation of Preferential Attachment and Node Fitness in Temporal Complex Networks. Journal of Statistical Software 92 (3). (doi:10.18637/jss.v092.i03).
4. Inoue, M., Pham, T. & Shimodaira, H. (2020). Joint Estimation of Non-parametric Transitivity and Preferential Attachment Functions in Scientific Co-authorship Networks. Journal of Informetrics 14(3). (doi:10.1016/j.joi.2020.101042).
See Also
joint_estimate
, plot_contribution
Examples
## Not run:
library("PAFit")
net_object <- generate_net(N = 500, m = 10, s = 10, alpha = 0.5)
net_stat <- get_statistics(net_object)
result <- joint_estimate(net_object, net_stat)
simulated_data <- generate_simulated_data_from_estimated_model(net_object, net_stat, result)
plot_contribution(simulated_data, result, which_plot = "PA")
plot_contribution(simulated_data, result, which_plot = "fit")
## End(Not run)