only_A_estimate {PAFit} | R Documentation |
Estimating the attachment function in isolation by PAFit method
Description
This function estimates the attachment function A_k
by PAFit method. The method has a hyper-parameter r
. It first performs a cross-validation step to select the optimal parameter r
for the regularization of A_k
, then uses that r
to estimate the attachment function with the full data.
Usage
only_A_estimate(net_object ,
net_stat = get_statistics(net_object),
p = 0.75 ,
stop_cond = 10^-8 ,
mode_reg_A = 0 ,
MLE = FALSE ,
...)
Arguments
net_object |
an object of class |
net_stat |
An object of class |
p |
Numeric. This is the ratio of the number of new edges in the learning data to that of the full data. The data is then divided into two parts: learning data and testing data based on |
stop_cond |
Numeric. The iterative algorithm stops when |
mode_reg_A |
Binary. Indicates which regularization term is used for
|
MLE |
Logical. If |
... |
Other arguments to pass to the underlying algorithm. |
Value
Outputs a Full_PAFit_result
object, which is a list containing the following fields:
-
cv_data
: aCV_Data
object which contains the cross-validation data. This is the final Normally the user does not need to pay attention to this data.NULL
ifMLE = TRUE
. -
cv_result
: aCV_Result
object which contains the cross-validation result. Normally the user does not need to pay attention to this data.NULL
ifMLE = TRUE
. -
estimate_result
: this is aPAFit_result
object which contains the estimated PA function and its confidence interval. It also includes the estimated attachment exponenent\alpha
(assuming the modelA_k = k^\alpha
) in the fieldalpha
, and the confidence interval of\alpha
(in the fieldci
) when possible. In particular, the important fields are:-
ratio
: this is the selected value for the hyper-parameterr
. -
k
andA
: a degree vector and the estimated PA function. -
var_A
: the estimated variance ofA
. -
var_logA
: the estimated variance oflog A
. -
upper_A
: the upper value of the interval of two standard deviations aroundA
. -
lower_A
: the lower value of the interval of two standard deviations aroundA
. -
center_k
andtheta
: when we perform binning, these are the centers of the bins and the estimated PA values for those bins.theta
is similar toA
but with duplicated values removed. -
var_bin
: the variance oftheta
. Same asvar_A
but with duplicated values removed. -
upper_bin
: the upper value of the interval of two standard deviations aroundtheta
. Same asupper_A
but with duplicated values removed. -
lower_lower
: the lower value of the interval of two standard deviations aroundtheta
. Same aslower_A
but with duplicated values removed. -
g
: the number of bins used. -
alpha
andci
:alpha
is the estimated attachment exponenet\alpha
(when assumeA_k = k^\alpha
), whileci
is the confidence interval. -
loglinear_fit
: this is the fitting result when we estimate\alpha
. -
objective_value
: values of the objective function over iterations in the final run with the full data. -
diverge_zero
: logical value indicates whether the algorithm diverged in the final run with the full data.
-
Author(s)
Thong Pham thongphamthe@gmail.com
References
1. Pham, T., Sheridan, P. & Shimodaira, H. (2015). PAFit: A Statistical Method for Measuring Preferential Attachment in Temporal Complex Networks. PLoS ONE 10(9): e0137796. (doi:10.1371/journal.pone.0137796).
2. Pham, T., Sheridan, P. & Shimodaira, H. (2016). Joint Estimation of Preferential Attachment and Node Fitness in Growing Complex Networks. Scientific Reports 6, Article number: 32558. (doi:10.1038/srep32558).
See Also
See get_statistics
for how to create summerized statistics needed in this function.
See Newman
and Jeong
for other methods to estimate the attachment function A_k
in isolation.
Examples
## Not run:
library("PAFit")
set.seed(1)
#### Example 1: Linear preferential attachment #########
# a network from BA model
net <- generate_net(N = 1000 , m = 50 , mode = 1, alpha = 1, s = 0)
net_stats <- get_statistics(net, only_PA = TRUE)
result <- only_A_estimate(net, net_stats)
# plot the estimated attachment function
plot(result, net_stats)
# true function
true_A <- result$estimate_result$center_k
lines(result$estimate_result$center_k, true_A, col = "red") # true line
legend("topleft" , legend = "True function" , col = "red" , lty = 1 , bty = "n")
#### Example 2: a non-log-linear preferential attachment #########
# A_k = alpha* log (max(k,1))^beta + 1, with alpha = 2, and beta = 2
set.seed(1)
net <- generate_net(N = 1000 , m = 50 , mode = 3, alpha = 2, beta = 2, s = 0)
net_stats <- get_statistics(net,only_PA = TRUE)
result <- only_A_estimate(net, net_stats)
# plot the estimated attachment function
plot(result, net_stats)
# true function
true_A <- 2 * log(pmax(result$estimate_result$center_k,1))^2 + 1 # true function
lines(result$estimate_result$center_k, true_A, col = "red") # true line
legend("topleft" , legend = "True function" , col = "red" , lty = 1 , bty = "n")
#############################################################################
#### Example 3: another non-log-linear preferential attachment kernel ############
set.seed(1)
# A_k = min(max(k,1),sat_at)^alpha, with alpha = 1, and sat_at = 200
# inverse variance of the distribution of node fitnesse = 10
net <- generate_net(N = 1000 , m = 50 , mode = 2, alpha = 1, sat_at = 200, s = 0)
net_stats <- get_statistics(net, only_PA = TRUE)
result <- only_A_estimate(net, net_stats)
# plot the estimated attachment function
true_A <- pmin(pmax(result$estimate_result$center_k,1),200)^1 # true function
plot(result , net_stats, max_A = max(true_A,result$estimate_result$theta))
lines(result$estimate_result$center_k, true_A, col = "red") # true line
legend("topleft" , legend = "True function" , col = "red" , lty = 1 , bty = "n")
## End(Not run)