generate_simulated_data_from_estimated_model {PAFit} | R Documentation |
Generating simulated data from a fitted model
Description
This function generates simulated networks from a fitted model and performs estimations on these simulated networks with the same setting used in the original estimation. Each simulated network is generated using parameters of the fitted model, while keeping other aspects of the growth process as faithfully as possible to the original observed network.
Usage
generate_simulated_data_from_estimated_model(net_object, net_stat, result, M = 5)
Arguments
net_object |
an object of class |
net_stat |
An object of class |
result |
An object of class |
M |
integer. The number of simulated networks. Default value is |
Value
Outputs a Simulated_Data_From_Fitted_Model
object, which is a list containing the following fields:
-
graph_list
: a list containingM
simulated graphs. -
stats_list
: a list containingM
objects of classPAFit_data
, which are the results of applyingget_statistics
on the simulated graphs. -
result_list
: a list containingM
objects of classFull_PAFit_result
, which are the results of applyingjoint_estimate
on the simulated graphs.
Author(s)
Thong Pham thongphamthe@gmail.com
References
1. Pham, T., Sheridan, P. & Shimodaira, H. (2015). PAFit: A Statistical Method for Measuring Preferential Attachment in Temporal Complex Networks. PLoS ONE 10(9): e0137796. (doi:10.1371/journal.pone.0137796).
2. Pham, T., Sheridan, P. & Shimodaira, H. (2016). Joint Estimation of Preferential Attachment and Node Fitness in Growing Complex Networks. Scientific Reports 6, Article number: 32558. (doi:10.1038/srep32558).
3. Pham, T., Sheridan, P. & Shimodaira, H. (2020). PAFit: An R Package for the Non-Parametric Estimation of Preferential Attachment and Node Fitness in Temporal Complex Networks. Journal of Statistical Software 92 (3). (doi:10.18637/jss.v092.i03).
4. Inoue, M., Pham, T. & Shimodaira, H. (2020). Joint Estimation of Non-parametric Transitivity and Preferential Attachment Functions in Scientific Co-authorship Networks. Journal of Informetrics 14(3). (doi:10.1016/j.joi.2020.101042).
See Also
get_statistics
, joint_estimate
, plot_contribution
Examples
## Not run:
library("PAFit")
net_object <- generate_net(N = 500, m = 10, s = 10, alpha = 0.5)
net_stat <- get_statistics(net_object)
result <- joint_estimate(net_object, net_stat)
simulated_data <- generate_simulated_data_from_estimated_model(net_object, net_stat, result)
plot_contribution(simulated_data, result, which_plot = "PA")
plot_contribution(simulated_data, result, which_plot = "fit")
## End(Not run)