c_weight |
One iteration to run Newton Raphson to get c-optimal weights |
c_weight_1 |
The first derivative of the c-optimality criterion w.r.t the model parameters |
c_weight_2 |
The second derivative of the c-optimality criterion with respect to the model parameters |
D1 |
Computing each element of the function c_weight_1 |
d11 |
Computing each element of the function DD_weight_1 |
DD1 |
Computing each element of the function c_weight_2 |
dd11 |
Computing each element of the function DD_weight_2 |
DD_weight |
One iteration to run Newton Raphson to get Ds-optimal weights |
DD_weight_1 |
The first derivative of the Ds-optimality criterion with respect to the model parameters |
DD_weight_2 |
The second derivative of the Ds-optimality criterion with respect to the model parameters |
Deff |
Obtaining D-efficiency for estimating model parameters |
Dp |
Target dose, EDp |
DS1 |
Sensitivity function of c-optimality criterion for the EDp |
ds11 |
Sensitivity function of Ds-optimality criterion |
Dseff |
Obtaining Ds-efficiency for estimating the asymmetric factor under the 5-parameter logistic model. |
DsOPT |
Search Ds-optimal design for estimating the asymmetric factor under the 5-parameter logistic model. |
D_weight |
One iteration to run Newton Raphson to get D-optimal weights |
D_weight_1 |
The first derivative of the D-optimality criterion w.r.t the model parameters |
D_weight_2 |
The second derivative of the D-optimality criterion w.r.t the model parameters |
EDpeff |
Obtaining c-efficiency for estimating the EDp under the 5-parameter logistic model. |
EDpOPT |
Search c-optimal designs for estimating the EDp under the 5-parameter logistic model |
f |
Gradient of the mean function |
g |
Partial derivative of the EDp with respect to the model parameters |
ginv |
Generalized Inverse Matrix |
infor |
Obtain a information matrix at a single design point |
Inv |
Adjusting invere information matrix being not singular |
Minus |
Matrix subtraction |
Multiple |
Matrix multiplication |
Plus |
Matrix addition |
RDOPT |
Search the robust D-optimal designs for estimating model parameters |
SDM |
Summation of diagonal elements in a matrix |
smalld1 |
Sub-function of the function D_weight_1 |
smalldd1 |
Sub-function of the function D_weight_2 |
smallds1 |
Sensitivity function of D-optimality criterion |
sMultiple |
Multiply a constant to a matrix |
S_weight |
Newton Raphson method to get optimal weights |
Trans |
Transpose of a matrix |
upinfor |
Obtain normalized Fisher information matrix |