Data-Driven Design of Targeted Gene Panels for Estimating Immunotherapy Biomarkers


[Up] [Top]

Documentation for package ‘ICBioMark’ version 0.1.4

Help Pages

ensembl_gene_lengths Gene Lengths from the Ensembl Database
example_first_pred_tmb First-Fit Predictive Model Fitting on Example Data
example_gen_model Generative Model from Simulated Data
example_maf_data Simulated MAF Data
example_predictions Example Predictions
example_refit_panel Refitted Predictive Model Fitted on Example Data
example_refit_range Refitted Predictive Models Fitted on Example Data
example_tables Mutation Matrices from Simulated Data
example_tib_tables Tumour Indel Burden of Example Train, Validation and Test Data.
example_tmb_tables Tumour Mutation Burden of Example Train, Validation and Test Data.
fit_gen_model Fit Generative Model
fit_gen_model_uninteract Fit Generative Model Without Gene/Variant Type-Specific Interactions
fit_gen_model_unisamp Fit Generative Model Without Sample-Specific Effects
generate_maf_data Generate mutation data.
get_auprc AUPRC Metrics for Predictions
get_biomarker_from_maf Produce a Table of Biomarker Values from a MAF
get_biomarker_tables Get True Biomarker Values on Training, Validation and Test Sets
get_gen_estimates Investigate Generative Model Comparisons
get_K Construct Bias Penalisation
get_mutation_dictionary Group and Filter Mutation Types
get_mutation_tables Produce Training, Validation and Test Matrices
get_p Construct Optimisation Parameters.
get_panels_from_fit Extract Panel Details from Group Lasso Fit
get_predictions Produce Predictions on an Unseen Dataset
get_r_squared R Squared Metrics for Predictions
get_stats Metrics for Predictive Performance
get_table_from_maf Produce a Mutation Matrix from a MAF
ICBioMark ICBioMark: A package for cost-effective design of gene panels to predict exome-wide biomarkers.
nsclc_maf Non-Small Cell Lung Cancer MAF Data
nsclc_survival Non-Small Cell Lung Cancer Survival and Clinical Data
pred_first_fit First-Fit Predicitve Model with Group Lasso
pred_intervals Produce Error Bounds for Predictions
pred_refit_panel Refitted Predictive Model for a Given Panel
pred_refit_range Get Refitted Predictive Models for a First-Fit Range of Panels
vis_model_fit Visualise Generative Model Fit