Functions, Data and Code for Count Data


[Up] [Top]

Documentation for package ‘COUNT’ version 1.3.4

Help Pages

affairs affairs
azcabgptca azcabgptca
azdrg112 azdrg112
azpro azpro
azprocedure azprocedure
badhealth badhealth
fasttrakg fasttrakg
fishing fishing
lbw lbw
lbwgrp lbwgrp
logit_syn Logistic regression : generic synthetic binary/binomial logistic data and model
loomis loomis
mdvis mdvis
medpar medpar
ml.nb1 NB1: maximum likelihood linear negative binomial regression
ml.nb2 NB2: maximum likelihood linear negative binomial regression
ml.nbc NBC: maximum likelihood linear negative binomial regression
ml.pois NB2: maximum likelihood Poisson regression
modelfit Fit Statistics for generalized linear models
myTable Frequency table
nb1_syn Negative binomial (NB1): generic synthetic linear negative binomial data and model
nb2.obs.pred Table of negative binomial counts: observed vs predicted proportions and difference
nb2_syn Negative binomial (NB2): generic synthetic negative binomial data and model
nbc_syn Negative binomial (NB-C): generic synthetic canonical negative binomial data and model
nuts nuts
poi.obs.pred Table of Poisson counts: observed vs predicted proportions and difference
poisson_syn Poisson : generic synthetic Poisson data and model
probit_syn Probit regression : generic synthetic binary/binomial probit data and model
rwm rwm
rwm1984 rwm1984
rwm5yr rwm5yr
ships ships
smoking smoking
titanic titanic
titanicgrp titanicgrp