affairs |
affairs |
azcabgptca |
azcabgptca |
azdrg112 |
azdrg112 |
azpro |
azpro |
azprocedure |
azprocedure |
badhealth |
badhealth |
fasttrakg |
fasttrakg |
fishing |
fishing |
lbw |
lbw |
lbwgrp |
lbwgrp |
logit_syn |
Logistic regression : generic synthetic binary/binomial logistic data and model |
loomis |
loomis |
mdvis |
mdvis |
medpar |
medpar |
ml.nb1 |
NB1: maximum likelihood linear negative binomial regression |
ml.nb2 |
NB2: maximum likelihood linear negative binomial regression |
ml.nbc |
NBC: maximum likelihood linear negative binomial regression |
ml.pois |
NB2: maximum likelihood Poisson regression |
modelfit |
Fit Statistics for generalized linear models |
myTable |
Frequency table |
nb1_syn |
Negative binomial (NB1): generic synthetic linear negative binomial data and model |
nb2.obs.pred |
Table of negative binomial counts: observed vs predicted proportions and difference |
nb2_syn |
Negative binomial (NB2): generic synthetic negative binomial data and model |
nbc_syn |
Negative binomial (NB-C): generic synthetic canonical negative binomial data and model |
nuts |
nuts |
poi.obs.pred |
Table of Poisson counts: observed vs predicted proportions and difference |
poisson_syn |
Poisson : generic synthetic Poisson data and model |
probit_syn |
Probit regression : generic synthetic binary/binomial probit data and model |
rwm |
rwm |
rwm1984 |
rwm1984 |
rwm5yr |
rwm5yr |
ships |
ships |
smoking |
smoking |
titanic |
titanic |
titanicgrp |
titanicgrp |