nb2_syn {COUNT} | R Documentation |
Negative binomial (NB2): generic synthetic negative binomial data and model
Description
nb2_syn is a generic function for developing synthetic NB2 data and a model given user defined specifications.
Usage
nb2_syn(nobs = 50000, off = 0, alpha = 1, xv = c(1, 0.75, -1.5))
Arguments
nobs |
number of observations in model, Default is 50000 |
alpha |
NB2 heterogeneity or ancillary parameter |
off |
optional: log of offset variable |
xv |
predictor coefficient values. First argument is intercept. Use as xv = c(intercept , x1_coef, x2_coef, ...) |
Details
Create a synthetic negative binomial (NB2) regression model using the appropriate arguments. Model data with predictors indicated as a group with a period (.). Offset optional. If no offset is desired, drop "off= loff" from nb2_syn function call and "+ loff" from glm.nb function call. See examples.
Data can be estimated using the glm.nb() function, or the ml.nb2() function in the COUNT package, or by using the gamlss function in the gamlss package, with "family=NBI" option.
Value
nby |
Negative binomial response; number of counts |
sim.data |
synthetic data set |
Author(s)
Andrew Robinson, Universty of Melbourne, Australia, and Joseph M. Hilbe, Arizona State University, Jet Propulsion Laboratory, California Institute of Technology
References
Hilbe, J.M. (2011), Negative Binomial Regression, second edition, Cambridge University Press.
See Also
Examples
library(MASS)
sim.data <- nb2_syn(nobs = 500, alpha = .5, xv = c(2, .75, -1.25))
mynb2 <- glm.nb(nby ~ . , data = sim.data)
summary(mynb2)
confint(mynb2)
# with offset
oset <- rep(1:5, each=100, times=1)*100
loff <- log(oset)
sim.data <- nb2_syn(nobs = 500, off = loff, alpha = .5, xv = c(1.2, -.75, .25, -1.3))
mypof <- glm.nb(nby ~ . + loff, data = sim.data)
summary(mypof)
confint(mypof)
# without offset, exponentiated coefficients, CI's
sim.data <- nb2_syn(nobs = 500, alpha = .75, xv = c(1, .5, -1.4))
mynbf <- glm.nb(nby ~ . , data = sim.data)
exp(coef(mynbf))
exp(confint(mynbf))
## Not run:
# default, without offset
sim.data <- nb2_syn()
dnb2 <- glm.nb(nby ~ . , data = sim.data)
summary(dnb2)
## End(Not run)
# use ml.nb2.r function
sim.data <- nb2_syn(nobs = 500, alpha = .5, xv = c(2, .75, -1.25))
mynb2x <- ml.nb2(nby ~ . , data = sim.data)
mynb2x
## Not run:
# use gamlss function for modeling data after sim.data created
library(gamlss)
sim.data <- nb2_syn(nobs = 500, alpha = .5, xv = c(2, .75, -1.25))
gamnb <- gamlss(nby ~ ., family=NBI, data = sim.data)
gamnb
## End(Not run)