probit_syn {COUNT} | R Documentation |
Probit regression : generic synthetic binary/binomial probit data and model
Description
probit_syn is a generic function for developing synthetic probit regression data and a model given user defined specifications.
Usage
probit_syn(nobs=50000, d=1, xv = c(1, 0.5, -1.5))
Arguments
nobs |
number of observations in model, Default is 50000 |
d |
binomial denominator, Default is 1, a binary probit model. May use a variable containing different denominator values. |
xv |
predictor coefficient values. First argument is intercept. Use as xv = c(intercept , x1_coef, x2_coef, ...) |
Details
Create a synthetic probit regression model using the appropriate arguments. Binomial denominator must be declared. For a binary probit model, d=1. A variable may be used as the denominator when values differ. See examples.
Value
py |
binomial probit numerator; number of successes |
sim.data |
synthetic data set |
Author(s)
Joseph M. Hilbe, Arizona State University, and Jet Propulsion Laboratory, California Institute of Technology Andrew Robinson, Universty of Melbourne, Australia.
References
Hilbe, J.M. (2011), Negative Binomial Regression, second edition, Cambridge University Press. Hilbe, J.M. (2009), Logistic Regression Models, Chapman & Hall/CRCD
See Also
Examples
# Binary probit regression (denominator=1)
sim.data <-probit_syn(nobs = 5000, d = 1, xv = c(1, .5, -1.5))
myprobit <- glm(cbind(py,dpy) ~ ., family=binomial(link="probit"), data = sim.data)
summary(myprobit)
confint(myprobit)
# Binary probit regression with 3 predictors (denominator=1)
sim.data <-probit_syn(nobs = 5000, d = 1, xv = c(1, .75, -1.5, 1.15))
myprobit <- glm(cbind(py,dpy) ~ ., family=binomial(link="probit"), data = sim.data)
summary(myprobit)
confint(myprobit)
# Binomial or grouped probit regression with defined denominator, den
den <- rep(1:5, each=1000, times=1)*100
sim.data <- probit_syn(nobs = 5000, d = den, xv = c(1, .5, -1.5))
gpy <- glm(cbind(py,dpy) ~ ., family=binomial(link="probit"), data = sim.data)
summary(gpy)
## Not run:
# default
sim.data <- probit_syn()
dprobit <- glm(cbind(py,dpy) ~ . , family=binomial(link="probit"), data = sim.data)
summary(dprobit)
## End(Not run)