logit_syn {COUNT} | R Documentation |
logit_syn is a generic function for developing synthetic logistic regression data and a model given user defined specifications.
logit_syn(nobs=50000, d=1, xv = c(1, 0.5, -1.5))
nobs |
number of observations in model, Default is 50000 |
d |
binomial denominator, Default is 1, a binary logistic model. May use a variable containing different denominator values. |
xv |
predictor coefficient values. First argument is intercept. Use as xv = c(intercept , x1_coef, x2_coef, ...) |
Create a synthetic logistic regression model using the appropriate arguments. Binomial denominator must be declared. For a binary logistic model, d=1. A variable may be used as the denominator when values differ. See examples.
by |
binomial logistic numerator; number of successes |
sim.data |
synthetic data set |
Joseph M. Hilbe, Arizona State University, and Jet Propulsion Laboratory, California Institute of Technology Andrew Robinson, Universty of Melbourne, Australia.
Hilbe, J.M. (2011), Negative Binomial Regression, second edition, Cambridge University Press. Hilbe, J.M. (2009), Logistic Regression Models, Chapman & Hall/CRCD
# Binary logistic regression (denominator=1)
sim.data <-logit_syn(nobs = 500, d = 1, xv = c(1, .5, -1.5))
mylogit <- glm(cbind(by,dby) ~ ., family=binomial(link="logit"), data = sim.data)
summary(mylogit)
confint(mylogit)
# Binary logistic regression with odds ratios (denominator=1); 3 predictors
sim.data <-logit_syn(nobs = 500, d = 1, xv = c(1, .75, -1.5, 1.15))
mylogit <- glm(cbind(by,dby) ~ ., family=binomial(link="logit"), data = sim.data)
exp(coef(mylogit))
exp(confint(mylogit))
# Binomial or grouped logistic regression with defined denominator, den
den <- rep(1:5, each=100, times=1)*100
sim.data <- logit_syn(nobs = 500, d = den, xv = c(1, .5, -1.5))
gby <- glm(cbind(by,dby) ~ ., family=binomial(link="logit"), data = sim.data)
summary(gby)
## Not run:
# default
sim.data <- logit_syn(nobs=500, d=1, xv = c(2, -.55, 1.15))
dlogit <- glm(cbind(by,dby) ~ . , family=binomial(link="logit"), data = sim.data)
summary(dlogit)
## End(Not run)