ml.nbc {COUNT} | R Documentation |
ml.nbc is a maximum likelihood function for estimating canonical linear negative binomial (NB-C) data.
ml.nbc(formula, data, start=NULL, verbose=FALSE)
formula |
an object of class '"formula"': a symbolic description of the model to be fitted. The details of model specification are given under 'Details'. |
data |
a mandatory data frame containing the variables in the model. |
start |
an optional vector of starting values for the parameters. |
verbose |
a logical flag to indicate whether the fit information should be printed. |
ml.nbc is used like glm.nb, but without saving ancillary statistics.
The function returns a dataframe with the following components:
Estimate |
ML estimate of the parameter |
SE |
Asymptotic estimate of the standard error of the estimate of the parameter |
Z |
The Z statistic of the asymptotic hypothesis test that the population value for the parameter is 0. |
LCL |
Lower 95% confidence interval for the parameter estimate. |
UCL |
Upper 95% confidence interval for the parameter estimate. |
Andrew Robinson, Universty of Melbourne, Australia, and Joseph M. Hilbe, Arizona State University, and Jet Propulsion Laboratory, California Institute of Technology
Hilbe, J.M. (2011), Negative Binomial Regression, second edition, Cambridge University Press.
# Table 10.12, Hilbe. J.M. (2011), Negative Binomial Regression,
# 2nd ed. Cambridge University Press (adapted)
## Not run:
data(medpar)
nobs <- 50000
x2 <- runif(nobs)
x1 <- runif(nobs)
xb <- 1.25*x1 + .1*x2 - 1.5
mu <- 1/(exp(-xb)-1)
p <- 1/(1+mu)
r <- 1
gcy <- rnbinom(nobs, size=r, prob = p)
test <- data.frame(gcy, x1, x2)
nbc <- ml.nbc(gcy ~ x1 + x2, data=test)
nbc
## End(Not run)