Bayesian Preference Learning with the Mallows Rank Model


[Up] [Top]

Documentation for package ‘BayesMallows’ version 2.2.1

Help Pages

assess_convergence Trace Plots from Metropolis-Hastings Algorithm
assess_convergence.BayesMallows Trace Plots from Metropolis-Hastings Algorithm
assess_convergence.BayesMallowsMixtures Trace Plots from Metropolis-Hastings Algorithm
assign_cluster Assign Assessors to Clusters
beach_preferences Beach preferences
bernoulli_data Simulated intransitive pairwise preferences
burnin See the burnin
burnin.BayesMallows See the burnin
burnin.BayesMallowsMixtures See the burnin
burnin.SMCMallows See the burnin
burnin<- Set the burnin
burnin<-.BayesMallows Set the burnin
burnin<-.BayesMallowsMixtures Set the burnin
cluster_data Simulated clustering data
compute_consensus Compute Consensus Ranking
compute_consensus.BayesMallows Compute Consensus Ranking
compute_consensus.SMCMallows Compute Consensus Ranking
compute_exact_partition_function Compute exact partition function
compute_expected_distance Expected value of metrics under a Mallows rank model
compute_mallows Preference Learning with the Mallows Rank Model
compute_mallows_mixtures Compute Mixtures of Mallows Models
compute_mallows_sequentially Estimate the Bayesian Mallows Model Sequentially
compute_observation_frequency Frequency distribution of the ranking sequences
compute_posterior_intervals Compute Posterior Intervals
compute_posterior_intervals.BayesMallows Compute Posterior Intervals
compute_posterior_intervals.SMCMallows Compute Posterior Intervals
compute_rank_distance Distance between a set of rankings and a given rank sequence
create_ordering Convert between ranking and ordering.
create_ranking Convert between ranking and ordering.
estimate_partition_function Estimate Partition Function
get_acceptance_ratios Get Acceptance Ratios
get_acceptance_ratios.BayesMallows Get Acceptance Ratios
get_acceptance_ratios.SMCMallows Get Acceptance Ratios
get_cardinalities Get cardinalities for each distance
get_mallows_loglik Likelihood and log-likelihood evaluation for a Mallows mixture model
get_transitive_closure Get transitive closure
heat_plot Heat plot of posterior probabilities
plot.BayesMallows Plot Posterior Distributions
plot.SMCMallows Plot SMC Posterior Distributions
plot_elbow Plot Within-Cluster Sum of Distances
plot_top_k Plot Top-k Rankings with Pairwise Preferences
potato_true_ranking True ranking of the weights of 20 potatoes.
potato_visual Potato weights assessed visually
potato_weighing Potato weights assessed by hand
predict_top_k Predict Top-k Rankings with Pairwise Preferences
print.BayesMallows Print Method for BayesMallows Objects
print.BayesMallowsMixtures Print Method for BayesMallows Objects
print.SMCMallows Print Method for BayesMallows Objects
sample_mallows Random Samples from the Mallows Rank Model
sample_prior Sample from prior distribution
setup_rank_data Setup rank data
set_compute_options Specify options for computation
set_initial_values Set initial values of scale parameter and modal ranking
set_model_options Set options for Bayesian Mallows model
set_priors Set prior parameters for Bayesian Mallows model
set_progress_report Set progress report options for MCMC algorithm
set_smc_options Set SMC compute options
sushi_rankings Sushi rankings
update_mallows Update a Bayesian Mallows model with new users
update_mallows.BayesMallows Update a Bayesian Mallows model with new users
update_mallows.BayesMallowsPriorSamples Update a Bayesian Mallows model with new users
update_mallows.SMCMallows Update a Bayesian Mallows model with new users