assess_convergence | Trace Plots from Metropolis-Hastings Algorithm |
assess_convergence.BayesMallows | Trace Plots from Metropolis-Hastings Algorithm |
assess_convergence.BayesMallowsMixtures | Trace Plots from Metropolis-Hastings Algorithm |
assign_cluster | Assign Assessors to Clusters |
beach_preferences | Beach preferences |
bernoulli_data | Simulated intransitive pairwise preferences |
burnin | See the burnin |
burnin.BayesMallows | See the burnin |
burnin.BayesMallowsMixtures | See the burnin |
burnin.SMCMallows | See the burnin |
burnin<- | Set the burnin |
burnin<-.BayesMallows | Set the burnin |
burnin<-.BayesMallowsMixtures | Set the burnin |
cluster_data | Simulated clustering data |
compute_consensus | Compute Consensus Ranking |
compute_consensus.BayesMallows | Compute Consensus Ranking |
compute_consensus.SMCMallows | Compute Consensus Ranking |
compute_exact_partition_function | Compute exact partition function |
compute_expected_distance | Expected value of metrics under a Mallows rank model |
compute_mallows | Preference Learning with the Mallows Rank Model |
compute_mallows_mixtures | Compute Mixtures of Mallows Models |
compute_mallows_sequentially | Estimate the Bayesian Mallows Model Sequentially |
compute_observation_frequency | Frequency distribution of the ranking sequences |
compute_posterior_intervals | Compute Posterior Intervals |
compute_posterior_intervals.BayesMallows | Compute Posterior Intervals |
compute_posterior_intervals.SMCMallows | Compute Posterior Intervals |
compute_rank_distance | Distance between a set of rankings and a given rank sequence |
create_ordering | Convert between ranking and ordering. |
create_ranking | Convert between ranking and ordering. |
estimate_partition_function | Estimate Partition Function |
get_acceptance_ratios | Get Acceptance Ratios |
get_acceptance_ratios.BayesMallows | Get Acceptance Ratios |
get_acceptance_ratios.SMCMallows | Get Acceptance Ratios |
get_cardinalities | Get cardinalities for each distance |
get_mallows_loglik | Likelihood and log-likelihood evaluation for a Mallows mixture model |
get_transitive_closure | Get transitive closure |
heat_plot | Heat plot of posterior probabilities |
plot.BayesMallows | Plot Posterior Distributions |
plot.SMCMallows | Plot SMC Posterior Distributions |
plot_elbow | Plot Within-Cluster Sum of Distances |
plot_top_k | Plot Top-k Rankings with Pairwise Preferences |
potato_true_ranking | True ranking of the weights of 20 potatoes. |
potato_visual | Potato weights assessed visually |
potato_weighing | Potato weights assessed by hand |
predict_top_k | Predict Top-k Rankings with Pairwise Preferences |
print.BayesMallows | Print Method for BayesMallows Objects |
print.BayesMallowsMixtures | Print Method for BayesMallows Objects |
print.SMCMallows | Print Method for BayesMallows Objects |
sample_mallows | Random Samples from the Mallows Rank Model |
sample_prior | Sample from prior distribution |
setup_rank_data | Setup rank data |
set_compute_options | Specify options for computation |
set_initial_values | Set initial values of scale parameter and modal ranking |
set_model_options | Set options for Bayesian Mallows model |
set_priors | Set prior parameters for Bayesian Mallows model |
set_progress_report | Set progress report options for MCMC algorithm |
set_smc_options | Set SMC compute options |
sushi_rankings | Sushi rankings |
update_mallows | Update a Bayesian Mallows model with new users |
update_mallows.BayesMallows | Update a Bayesian Mallows model with new users |
update_mallows.BayesMallowsPriorSamples | Update a Bayesian Mallows model with new users |
update_mallows.SMCMallows | Update a Bayesian Mallows model with new users |