| set_priors {BayesMallows} | R Documentation |
Set prior parameters for Bayesian Mallows model
Description
Set values related to the prior distributions for the Bayesian Mallows model.
Usage
set_priors(gamma = 1, lambda = 0.001, psi = 10, kappa = c(1, 3))
Arguments
gamma |
Strictly positive numeric value specifying the shape parameter
of the gamma prior distribution of |
lambda |
Strictly positive numeric value specifying the rate parameter
of the gamma prior distribution of |
psi |
Positive integer specifying the concentration parameter |
kappa |
Hyperparameters of the truncated Beta prior used for error
probability |
Value
An object of class "BayesMallowsPriors", to be provided in the
priors argument to compute_mallows(), compute_mallows_mixtures(), or
update_mallows().
References
Crispino M, Arjas E, Vitelli V, Barrett N, Frigessi A (2019).
“A Bayesian Mallows approach to nontransitive pair comparison data: How human are sounds?”
The Annals of Applied Statistics, 13(1), 492–519.
doi:10.1214/18-aoas1203.
Vitelli V, Sørensen, Crispino M, Arjas E, Frigessi A (2018).
“Probabilistic Preference Learning with the Mallows Rank Model.”
Journal of Machine Learning Research, 18(1), 1–49.
https://jmlr.org/papers/v18/15-481.html.
See Also
Other preprocessing:
get_transitive_closure(),
set_compute_options(),
set_initial_values(),
set_model_options(),
set_progress_report(),
set_smc_options(),
setup_rank_data()