compute_mallows_sequentially {BayesMallows} | R Documentation |
Estimate the Bayesian Mallows Model Sequentially
Description
Compute the posterior distributions of the parameters of the
Bayesian Mallows model using sequential Monte Carlo. This is based on the
algorithms developed in
Stein (2023).
This function differs from update_mallows()
in that it takes all the data
at once, and uses SMC to fit the model step-by-step. Used in this way, SMC
is an alternative to Metropolis-Hastings, which may work better in some
settings. In addition, it allows visualization of the learning process.
Usage
compute_mallows_sequentially(
data,
initial_values,
model_options = set_model_options(),
smc_options = set_smc_options(),
compute_options = set_compute_options(),
priors = set_priors(),
pfun_estimate = NULL
)
Arguments
data |
A list of objects of class "BayesMallowsData" returned from
|
initial_values |
An object of class "BayesMallowsPriorSamples" returned
from |
model_options |
An object of class "BayesMallowsModelOptions" returned
from |
smc_options |
An object of class "SMCOptions" returned from
|
compute_options |
An object of class "BayesMallowsComputeOptions"
returned from |
priors |
An object of class "BayesMallowsPriors" returned from
|
pfun_estimate |
Object returned from |
Details
This function is very new, and plotting functions and other tools for visualizing the posterior distribution do not yet work. See the examples for some workarounds.
Value
An object of class BayesMallowsSequential.
References
Stein A (2023). Sequential Inference with the Mallows Model. Ph.D. thesis, Lancaster University.
See Also
Other modeling:
burnin()
,
burnin<-()
,
compute_mallows()
,
compute_mallows_mixtures()
,
sample_prior()
,
update_mallows()
Examples
# Observe one ranking at each of 12 timepoints
library(ggplot2)
data <- lapply(seq_len(nrow(potato_visual)), function(i) {
setup_rank_data(potato_visual[i, ], user_ids = i)
})
initial_values <- sample_prior(
n = 200, n_items = 20,
priors = set_priors(gamma = 3, lambda = .1))
mod <- compute_mallows_sequentially(
data = data,
initial_values = initial_values,
smc_options = set_smc_options(n_particles = 500, mcmc_steps = 20))
# We can see the acceptance ratio of the move step for each timepoint:
get_acceptance_ratios(mod)
plot_dat <- data.frame(
n_obs = seq_along(data),
alpha_mean = apply(mod$alpha_samples, 2, mean),
alpha_sd = apply(mod$alpha_samples, 2, sd)
)
# Visualize how the dispersion parameter is being learned as more data arrive
ggplot(plot_dat, aes(x = n_obs, y = alpha_mean, ymin = alpha_mean - alpha_sd,
ymax = alpha_mean + alpha_sd)) +
geom_line() +
geom_ribbon(alpha = .1) +
ylab(expression(alpha)) +
xlab("Observations") +
theme_classic() +
scale_x_continuous(
breaks = seq(min(plot_dat$n_obs), max(plot_dat$n_obs), by = 1))
# Visualize the learning of the rank for a given item (item 1 in this example)
plot_dat <- data.frame(
n_obs = seq_along(data),
rank_mean = apply(mod$rho_samples[1, , ], 2, mean),
rank_sd = apply(mod$rho_samples[1, , ], 2, sd)
)
ggplot(plot_dat, aes(x = n_obs, y = rank_mean, ymin = rank_mean - rank_sd,
ymax = rank_mean + rank_sd)) +
geom_line() +
geom_ribbon(alpha = .1) +
xlab("Observations") +
ylab(expression(rho[1])) +
theme_classic() +
scale_x_continuous(
breaks = seq(min(plot_dat$n_obs), max(plot_dat$n_obs), by = 1))