| assign_cluster {BayesMallows} | R Documentation |
Assign Assessors to Clusters
Description
Assign assessors to clusters by finding the cluster with highest posterior probability.
Usage
assign_cluster(model_fit, soft = TRUE, expand = FALSE)
Arguments
model_fit |
An object of type |
soft |
A logical specifying whether to perform soft or hard clustering.
If |
expand |
A logical specifying whether or not to expand the rowset of
each assessor to also include clusters for which the assessor has 0 a
posterior assignment probability. Only used when |
Value
A dataframe. If soft = FALSE, it has one row per assessor, and
columns assessor, probability and map_cluster. If soft = TRUE, it
has n_cluster rows per assessor, and the additional column cluster.
See Also
Other posterior quantities:
compute_consensus(),
compute_posterior_intervals(),
get_acceptance_ratios(),
heat_plot(),
plot.BayesMallows(),
plot.SMCMallows(),
plot_elbow(),
plot_top_k(),
predict_top_k(),
print.BayesMallows()
Examples
# Fit a model with three clusters to the simulated example data
set.seed(1)
mixture_model <- compute_mallows(
data = setup_rank_data(cluster_data),
model_options = set_model_options(n_clusters = 3),
compute_options = set_compute_options(nmc = 5000, burnin = 1000)
)
head(assign_cluster(mixture_model))
head(assign_cluster(mixture_model, soft = FALSE))