add_effect_diagnostic | Add an additional diagnostic to the effect model |
add_effect_model | Add an additional model to the joint effect ensemble |
add_known_propensity_score | Uses a known propensity score |
add_moderator | Adds moderators to the configuration |
add_outcome_diagnostic | Add an additional diagnostic to the outcome model |
add_outcome_model | Add an additional model to the outcome ensemble |
add_propensity_diagnostic | Add an additional diagnostic to the propensity score |
add_propensity_score_model | Add an additional model to the propensity score ensemble |
add_vimp | Adds variable importance information |
attach_config | Attach an 'HTE_cfg' to a dataframe |
basic_config | Create a basic config for HTE estimation |
Constant_cfg | Configuration of a Constant Estimator |
construct_pseudo_outcomes | Construct Pseudo-outcomes |
Diagnostics_cfg | Configuration of Model Diagnostics |
estimate_QoI | Estimate Quantities of Interest |
HTE_cfg | Configuration of Quantities of Interest |
KernelSmooth_cfg | Configuration for a Kernel Smoother |
Known_cfg | Configuration of Known Model |
make_splits | Define splits for cross-fitting |
MCATE_cfg | Configuration of Marginal CATEs |
Model_cfg | Base Class of Model Configurations |
Model_data | R6 class to represent data to be used in estimating a model |
predict.SL.glmnet.interaction | Prediction for an SL.glmnet object |
produce_plugin_estimates | Estimate models of nuisance functions |
QoI_cfg | Configuration of Quantities of Interest |
remove_vimp | Removes variable importance information |
SL.glmnet.interaction | Elastic net regression with pairwise interactions |
SLEnsemble_cfg | Configuration for a SuperLearner Ensemble |
SLLearner_cfg | Configuration of SuperLearner Submodel |
Stratified_cfg | Configuration for a Stratification Estimator |
VIMP_cfg | Configuration of Variable Importance |