Tidy Estimation of Heterogeneous Treatment Effects


[Up] [Top]

Documentation for package ‘tidyhte’ version 1.0.2

Help Pages

add_effect_diagnostic Add an additional diagnostic to the effect model
add_effect_model Add an additional model to the joint effect ensemble
add_known_propensity_score Uses a known propensity score
add_moderator Adds moderators to the configuration
add_outcome_diagnostic Add an additional diagnostic to the outcome model
add_outcome_model Add an additional model to the outcome ensemble
add_propensity_diagnostic Add an additional diagnostic to the propensity score
add_propensity_score_model Add an additional model to the propensity score ensemble
add_vimp Adds variable importance information
attach_config Attach an 'HTE_cfg' to a dataframe
basic_config Create a basic config for HTE estimation
Constant_cfg Configuration of a Constant Estimator
construct_pseudo_outcomes Construct Pseudo-outcomes
Diagnostics_cfg Configuration of Model Diagnostics
estimate_QoI Estimate Quantities of Interest
HTE_cfg Configuration of Quantities of Interest
KernelSmooth_cfg Configuration for a Kernel Smoother
Known_cfg Configuration of Known Model
make_splits Define splits for cross-fitting
MCATE_cfg Configuration of Marginal CATEs
Model_cfg Base Class of Model Configurations
Model_data R6 class to represent data to be used in estimating a model
predict.SL.glmnet.interaction Prediction for an SL.glmnet object
produce_plugin_estimates Estimate models of nuisance functions
QoI_cfg Configuration of Quantities of Interest
remove_vimp Removes variable importance information
SL.glmnet.interaction Elastic net regression with pairwise interactions
SLEnsemble_cfg Configuration for a SuperLearner Ensemble
SLLearner_cfg Configuration of SuperLearner Submodel
Stratified_cfg Configuration for a Stratification Estimator
VIMP_cfg Configuration of Variable Importance