HTE_cfg {tidyhte}R Documentation

Configuration of Quantities of Interest

Description

HTE_cfg is a configuration class that pulls everything together, indicating the full configuration for a given HTE analysis. This includes how to estimate models and what Quantities of Interest to calculate based off those underlying models.

Public fields

outcome

Model_cfg object indicating how outcome models should be estimated.

treatment

Model_cfg object indicating how the propensity score model should be estimated.

effect

Model_cfg object indicating how the joint effect model should be estimated.

qoi

QoI_cfg object indicating what the Quantities of Interest are and providing all necessary detail on how they should be estimated.

verbose

Logical indicating whether to print debugging information.

Methods

Public methods


Method new()

Create a new HTE_cfg object with all necessary information about how to carry out an HTE analysis.

Usage
HTE_cfg$new(
  outcome = NULL,
  treatment = NULL,
  effect = NULL,
  qoi = NULL,
  verbose = FALSE
)
Arguments
outcome

Model_cfg object indicating how outcome models should be estimated.

treatment

Model_cfg object indicating how the propensity score model should be estimated.

effect

Model_cfg object indicating how the joint effect model should be estimated.

qoi

QoI_cfg object indicating what the Quantities of Interest are and providing all necessary detail on how they should be estimated.

verbose

Logical indicating whether to print debugging information.

Examples
mcate_cfg <- MCATE_cfg$new(cfgs = list(x1 = KernelSmooth_cfg$new(neval = 100)))
pcate_cfg <- PCATE_cfg$new(
   cfgs = list(x1 = KernelSmooth_cfg$new(neval = 100)),
   model_covariates = c("x1", "x2", "x3"),
   num_mc_samples = list(x1 = 100)
)
vimp_cfg <- VIMP_cfg$new()
diag_cfg <- Diagnostics_cfg$new(
   outcome = c("SL_risk", "SL_coefs", "MSE"),
   ps = c("SL_risk", "SL_coefs", "AUC")
)
qoi_cfg <- QoI_cfg$new(
    mcate = mcate_cfg,
    pcate = pcate_cfg,
    vimp = vimp_cfg,
    diag = diag_cfg
)
ps_cfg <- SLEnsemble_cfg$new(
   learner_cfgs = list(SLLearner_cfg$new("SL.glm"), SLLearner_cfg$new("SL.gam"))
)
y_cfg <- SLEnsemble_cfg$new(
   learner_cfgs = list(SLLearner_cfg$new("SL.glm"), SLLearner_cfg$new("SL.gam"))
)
fx_cfg <- SLEnsemble_cfg$new(
   learner_cfgs = list(SLLearner_cfg$new("SL.glm"), SLLearner_cfg$new("SL.gam"))
)
HTE_cfg$new(outcome = y_cfg, treatment = ps_cfg, effect = fx_cfg, qoi = qoi_cfg)

Method clone()

The objects of this class are cloneable with this method.

Usage
HTE_cfg$clone(deep = FALSE)
Arguments
deep

Whether to make a deep clone.

Examples


## ------------------------------------------------
## Method `HTE_cfg$new`
## ------------------------------------------------

mcate_cfg <- MCATE_cfg$new(cfgs = list(x1 = KernelSmooth_cfg$new(neval = 100)))
pcate_cfg <- PCATE_cfg$new(
   cfgs = list(x1 = KernelSmooth_cfg$new(neval = 100)),
   model_covariates = c("x1", "x2", "x3"),
   num_mc_samples = list(x1 = 100)
)
vimp_cfg <- VIMP_cfg$new()
diag_cfg <- Diagnostics_cfg$new(
   outcome = c("SL_risk", "SL_coefs", "MSE"),
   ps = c("SL_risk", "SL_coefs", "AUC")
)
qoi_cfg <- QoI_cfg$new(
    mcate = mcate_cfg,
    pcate = pcate_cfg,
    vimp = vimp_cfg,
    diag = diag_cfg
)
ps_cfg <- SLEnsemble_cfg$new(
   learner_cfgs = list(SLLearner_cfg$new("SL.glm"), SLLearner_cfg$new("SL.gam"))
)
y_cfg <- SLEnsemble_cfg$new(
   learner_cfgs = list(SLLearner_cfg$new("SL.glm"), SLLearner_cfg$new("SL.gam"))
)
fx_cfg <- SLEnsemble_cfg$new(
   learner_cfgs = list(SLLearner_cfg$new("SL.glm"), SLLearner_cfg$new("SL.gam"))
)
HTE_cfg$new(outcome = y_cfg, treatment = ps_cfg, effect = fx_cfg, qoi = qoi_cfg)

[Package tidyhte version 1.0.2 Index]