HTE_cfg {tidyhte} | R Documentation |
Configuration of Quantities of Interest
Description
HTE_cfg
is a configuration class that pulls everything together, indicating
the full configuration for a given HTE analysis. This includes how to estimate
models and what Quantities of Interest to calculate based off those underlying models.
Public fields
outcome
Model_cfg
object indicating how outcome models should be estimated.treatment
Model_cfg
object indicating how the propensity score model should be estimated.effect
Model_cfg
object indicating how the joint effect model should be estimated.qoi
QoI_cfg
object indicating what the Quantities of Interest are and providing all necessary detail on how they should be estimated.verbose
Logical indicating whether to print debugging information.
Methods
Public methods
Method new()
Create a new HTE_cfg
object with all necessary information about how
to carry out an HTE analysis.
Usage
HTE_cfg$new( outcome = NULL, treatment = NULL, effect = NULL, qoi = NULL, verbose = FALSE )
Arguments
outcome
Model_cfg
object indicating how outcome models should be estimated.treatment
Model_cfg
object indicating how the propensity score model should be estimated.effect
Model_cfg
object indicating how the joint effect model should be estimated.qoi
QoI_cfg
object indicating what the Quantities of Interest are and providing all necessary detail on how they should be estimated.verbose
Logical indicating whether to print debugging information.
Examples
mcate_cfg <- MCATE_cfg$new(cfgs = list(x1 = KernelSmooth_cfg$new(neval = 100))) pcate_cfg <- PCATE_cfg$new( cfgs = list(x1 = KernelSmooth_cfg$new(neval = 100)), model_covariates = c("x1", "x2", "x3"), num_mc_samples = list(x1 = 100) ) vimp_cfg <- VIMP_cfg$new() diag_cfg <- Diagnostics_cfg$new( outcome = c("SL_risk", "SL_coefs", "MSE"), ps = c("SL_risk", "SL_coefs", "AUC") ) qoi_cfg <- QoI_cfg$new( mcate = mcate_cfg, pcate = pcate_cfg, vimp = vimp_cfg, diag = diag_cfg ) ps_cfg <- SLEnsemble_cfg$new( learner_cfgs = list(SLLearner_cfg$new("SL.glm"), SLLearner_cfg$new("SL.gam")) ) y_cfg <- SLEnsemble_cfg$new( learner_cfgs = list(SLLearner_cfg$new("SL.glm"), SLLearner_cfg$new("SL.gam")) ) fx_cfg <- SLEnsemble_cfg$new( learner_cfgs = list(SLLearner_cfg$new("SL.glm"), SLLearner_cfg$new("SL.gam")) ) HTE_cfg$new(outcome = y_cfg, treatment = ps_cfg, effect = fx_cfg, qoi = qoi_cfg)
Method clone()
The objects of this class are cloneable with this method.
Usage
HTE_cfg$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Examples
## ------------------------------------------------
## Method `HTE_cfg$new`
## ------------------------------------------------
mcate_cfg <- MCATE_cfg$new(cfgs = list(x1 = KernelSmooth_cfg$new(neval = 100)))
pcate_cfg <- PCATE_cfg$new(
cfgs = list(x1 = KernelSmooth_cfg$new(neval = 100)),
model_covariates = c("x1", "x2", "x3"),
num_mc_samples = list(x1 = 100)
)
vimp_cfg <- VIMP_cfg$new()
diag_cfg <- Diagnostics_cfg$new(
outcome = c("SL_risk", "SL_coefs", "MSE"),
ps = c("SL_risk", "SL_coefs", "AUC")
)
qoi_cfg <- QoI_cfg$new(
mcate = mcate_cfg,
pcate = pcate_cfg,
vimp = vimp_cfg,
diag = diag_cfg
)
ps_cfg <- SLEnsemble_cfg$new(
learner_cfgs = list(SLLearner_cfg$new("SL.glm"), SLLearner_cfg$new("SL.gam"))
)
y_cfg <- SLEnsemble_cfg$new(
learner_cfgs = list(SLLearner_cfg$new("SL.glm"), SLLearner_cfg$new("SL.gam"))
)
fx_cfg <- SLEnsemble_cfg$new(
learner_cfgs = list(SLLearner_cfg$new("SL.glm"), SLLearner_cfg$new("SL.gam"))
)
HTE_cfg$new(outcome = y_cfg, treatment = ps_cfg, effect = fx_cfg, qoi = qoi_cfg)