VIMP_cfg {tidyhte} | R Documentation |
Configuration of Variable Importance
Description
VIMP_cfg
is a configuration class for estimating a variable importance measure
across all moderators. This provides a meaningful measure of which moderators
explain the most of the CATE surface.
Public fields
estimand
String indicating the estimand to target.
sample_splitting
Logical indicating whether to use sample splitting in the calculation of variable importance.
linear
Logical indicating whether the variable importance assuming a linear model should be estimated.
Methods
Public methods
Method new()
Create a new VIMP_cfg
object with specified model configuration.
Usage
VIMP_cfg$new(sample_splitting = TRUE, linear_only = FALSE)
Arguments
sample_splitting
Logical indicating whether to use sample splitting in the calculation of variable importance. Choosing not to use sample splitting means that inference will only be valid for moderators with non-null importance.
linear_only
Logical indicating whether the variable importance should use only a single linear-only model. Variable importance measure will only be consistent for the population quantity if the true model of pseudo-outcomes is linear.
Returns
A new VIMP_cfg
object.
Examples
VIMP_cfg$new()
Method clone()
The objects of this class are cloneable with this method.
Usage
VIMP_cfg$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
References
Williamson, B. D., Gilbert, P. B., Carone, M., & Simon, N. (2021). Nonparametric variable importance assessment using machine learning techniques. Biometrics, 77(1), 9-22.
Williamson, B. D., Gilbert, P. B., Simon, N. R., & Carone, M. (2021). A general framework for inference on algorithm-agnostic variable importance. Journal of the American Statistical Association, 1-14.
Examples
VIMP_cfg$new()
## ------------------------------------------------
## Method `VIMP_cfg$new`
## ------------------------------------------------
VIMP_cfg$new()