make_splits {tidyhte} | R Documentation |
Define splits for cross-fitting
Description
This takes a dataset, a column with a unique identifier and an
arbitrary number of covariates on which to stratify the splits.
It returns the original dataset with an additional column .split_id
corresponding to an identifier for the split.
Usage
make_splits(data, identifier, ..., .num_splits)
Arguments
data |
dataframe |
identifier |
Unquoted name of unique identifier column |
... |
variables on which to stratify (requires that |
.num_splits |
number of splits to create. If VIMP is requested in |
Details
To see an example analysis, read vignette("experimental_analysis")
in the context
of an experiment, vignette("experimental_analysis")
for an observational study, or
vignette("methodological_details")
for a deeper dive under the hood.
Value
original dataframe with additional .split_id
column
See Also
attach_config()
, produce_plugin_estimates()
, construct_pseudo_outcomes()
,
estimate_QoI()
Examples
library("dplyr")
if(require("palmerpenguins")) {
data(package = 'palmerpenguins')
penguins$unitid = seq_len(nrow(penguins))
penguins$propensity = rep(0.5, nrow(penguins))
penguins$treatment = rbinom(nrow(penguins), 1, penguins$propensity)
cfg <- basic_config() %>%
add_known_propensity_score("propensity") %>%
add_outcome_model("SL.glm.interaction") %>%
remove_vimp()
attach_config(penguins, cfg) %>%
make_splits(unitid, .num_splits = 4) %>%
produce_plugin_estimates(outcome = body_mass_g, treatment = treatment, species, sex) %>%
construct_pseudo_outcomes(body_mass_g, treatment) %>%
estimate_QoI(species, sex)
}