bees |
A dataset of bees count data and relevant information in oilseed Brassica fields in an Australian temperate landscape. |
ccr |
Correct classification rate for predictive models based on cross -validation |
cran-comments |
Note on notes |
datasplit |
Split data for k-fold cross-validation |
decimaldigit |
Digit number after decimal point for a numeric variable |
gbmkrigeidwcv |
Cross validation, n-fold and leave-one-out for the hybrid methods of generalized boosted regression modeling ('gbm'), 'kriging' and inverse distance weighted ('IDW'). |
gbmkrigeidwpred |
Generate spatial predictions using the hybrid methods of generalized boosted regression modeling ('gbm'), 'kriging' and inverse distance weighted ('IDW'). |
glmcv |
Cross validation, n-fold and leave-one-out for generalised linear models ('glm') |
glmidwcv |
Cross validation, n-fold and leave-one-out for the hybrid method of generalised linear models ('glm') and inverse distance weighted ('IDW') ('glmidw') |
glmidwpred |
Generate spatial predictions using the hybrid method of generalised linear models ('glm') and inverse distance weighted ('IDW') ('glmidw') |
glmkrigecv |
Cross validation, n-fold and leave-one-out for the hybrid method of generalised linear models ('glm') and 'krige' ('glmkrige') |
glmkrigeidwcv |
Cross validation, n-fold and leave-one-out for the hybrid methods of generalised linear models ('glm'), 'kriging' and inverse distance weighted ('IDW'). |
glmkrigeidwpred |
Generate spatial predictions using the hybrid methods of generalised linear models ('glm'), 'kriging' and inverse distance weighted ('IDW'). |
glmkrigepred |
Generate spatial predictions using the hybrid method of generalised linear models ('glm') and 'krige' |
glmnetcv |
Cross validation, n-fold and leave-one-out, for 'glmnet' in 'glmnet' package |
glmpred |
Generate spatial predictions using generalised linear models ('glm') |
glscv |
Cross validation, n-fold and leave-one-out for generalized least squares ('gls') |
glsidwcv |
Cross validation, n-fold and leave-one-out for the hybrid method of generalized least squares ('gls') and inverse distance weighted ('idw') (glsidw) |
glsidwpred |
Generate spatial predictions using the hybrid method of generalized least squares ('gls') and inverse distance weighted ('IDW') ('glsidw') |
glskrigecv |
Cross validation, n-fold and leave-one-out for the hybrid method of generalized least squares ('gls') and kriging ('krige') ('glskrige') |
glskrigeidwcv |
Cross validation, n-fold and leave-one-out for the hybrid methods of generalised least squares ('gls'), 'kriging' and inverse distance weighted ('IDW') |
glskrigeidwpred |
Generate spatial predictions using the hybrid methods of generalised least squares ('gls'), 'kriging' and inverse distance weighted ('IDW') |
glskrigepred |
Generate spatial predictions using the hybrid method of generalized least squares ('gls') and kriging ('krige') ('glskrige') |
glspred |
Generate spatial predictions using generalized least squares ('gls') |
krigecv |
Cross validation, n-fold and leave-one-out for kriging methods ('krige') |
krigepred |
Generate spatial predictions using kriging methods ('krige') |
rfkrigeidwcv |
Cross validation, n-fold and leave-one-out for the hybrid methods of 'random forest' ('RF'), 'kriging' and inverse distance weighted ('IDW') |
rfkrigeidwpred |
Generate spatial predictions using the hybrid methods of 'random forest' ('RF'), 'kriging' and inverse distance weighted ('IDW'). |
sponge2 |
A dataset of sponge species richness in the Timor Sea region, northern Australia marine margin |
spongelonglat |
A dataset of sponge species richness in the Timor Sea region, northern Australia marine margin |
svmcv |
Cross validation, n-fold and leave-one-out for support vector machine ('svm') |
svmidwcv |
Cross validation, n-fold and leave-one-out for the hybrid method of support vector machine ('svm') regression and inverse distance weighted ('IDW') (svmidw) |
svmidwpred |
Generate spatial predictions using the hybrid method of support vector machine ('svm') regression and inverse distance weighted ('IDW') ('svmidw') |
svmkrigecv |
Cross validation, n-fold and leave-one-out for the hybrid method of support vector machine ('svm') regression and 'krige' (svmkrige) |
svmkrigeidwcv |
Cross validation, n-fold and leave-one-out for the hybrid methods of support vector machine ('svm') regression , 'kriging' and inverse distance weighted ('IDW'). |
svmkrigeidwpred |
Generate spatial predictions using the hybrid methods of support vector machine ('svm') regression , 'kriging' and inverse distance weighted ('IDW'). |
svmkrigepred |
Generate spatial predictions using the hybrid method of support vector machine ('svm') regression and 'krige' (svmkrige) |
svmpred |
Generate spatial predictions using support vector machine ('svm') |
tpscv |
Cross validation, n-fold and leave-one-out for thin plate splines ('TPS') |