sponge2 {spm2}R Documentation

A dataset of sponge species richness in the Timor Sea region, northern Australia marine margin

Description

This dataset contains 77 samples of 81 variables including easting (longitude), northing (latitude), bathy, backscatter and their derived variables.

Usage

data("sponge2")

Format

A data frame with 77 observations on the following 89 variables.

easting

a numeric vector, m

northing

a numeric vector, m

species.richness

a numeric vector, no unit

mud

a numeric vector, percentage

sand

a numeric vector, percentage

gravel

a numeric vector, percentage

bathy

a numeric vector, m

bs25

a numeric vector, dB

bs10

a numeric vector, dB

bs11

a numeric vector, dB

bs12

a numeric vector, dB

bs13

a numeric vector, dB

bs14

a numeric vector, dB

bs15

a numeric vector, dB

bs16

a numeric vector, dB

bs17

a numeric vector, dB

bs18

a numeric vector, dB

bs19

a numeric vector, dB

bs20

a numeric vector, dB

bs21

a numeric vector, dB

bs22

a numeric vector, dB

bs23

a numeric vector, dB

bs24

a numeric vector, dB

bs26

a numeric vector, dB

bs27

a numeric vector, dB

bs28

a numeric vector, dB

bs29

a numeric vector, dB

bs30

a numeric vector, dB

bs31

a numeric vector, dB

bs32

a numeric vector, dB

bs33

a numeric vector, dB

bs34

a numeric vector, dB

bs35

a numeric vector, dB

bs36

a numeric vector, dB

bs_o

a numeric vector, dB

bs_homo_o

a numeric vector

bs_entro_o

a numeric vector, no unit

bs_var_o

a numeric vector, dB^2

bs_lmi_o

a numeric vector

bathy_o

a numeric vector, m

bathy_lmi_o

a numeric vector

tpi_o

a numeric vector, no unit

slope_o

a numeric vector

plan_cur_o

a numeric vector

prof_cur_o

a numeric vector

relief_o

a numeric vector

rugosity_o

a numeric vector

dist.coast

a numeric vector, m

rugosity3

a numeric vector

rugosity5

a numeric vector

rugosity7

a numeric vector

tpi3

a numeric vector, no unit

tpi5

a numeric vector, no unit

tpi7

a numeric vector, no unit

bathy_lmi3

a numeric vector

bathy_lmi5

a numeric vector

bathy_lmi7

a numeric vector

plan_curv3

a numeric vector

plan_curv5

a numeric vector

plan_curv7

a numeric vector

relief_3

a numeric vector

relief_5

a numeric vector

relief_7

a numeric vector

slope3

a numeric vector

slope5

a numeric vector

slope7

a numeric vector

prof_cur3

a numeric vector

prof_cur5

a numeric vector

prof_cur7

a numeric vector

entro3

a numeric vector, no unit

entro5

a numeric vector, no unit

entro7

a numeric vector, no unit

homo3

a numeric vector

homo5

a numeric vector

homo7

a numeric vector

var3

a numeric vector, dB^2

var5

a numeric vector, dB^2

var7

a numeric vector, dB^2

bs_lmi3

a numeric vector

bs_lmi5

a numeric vector

bs_lmi7

a numeric vector

Details

For details, please see the source. This dataset was published as an appendix of the paper listed in the source. Where the long and lat were reprojected to easting and northing.

Source

see Appendix A-D. Supplementary data at: "http://dx.doi.org/10.1016/j.envsoft.2017.07.016."

References

Li, J., B. Alvarez, J. Siwabessy, M. Tran, Z. Huang, R. Przeslawski, L. Radke, F. Howard, and S. Nichol. 2017. Application of random forest, generalised linear model and their hybrid methods with geostatistical techniques to count data: Predicting sponge species richness. Environmental Modelling & Software, 97: 112-129.


[Package spm2 version 1.1.3 Index]