sponge2 {spm2} | R Documentation |
A dataset of sponge species richness in the Timor Sea region, northern Australia marine margin
Description
This dataset contains 77 samples of 81 variables including easting (longitude), northing (latitude), bathy, backscatter and their derived variables.
Usage
data("sponge2")
Format
A data frame with 77 observations on the following 89 variables.
easting
a numeric vector, m
northing
a numeric vector, m
species.richness
a numeric vector, no unit
mud
a numeric vector, percentage
sand
a numeric vector, percentage
gravel
a numeric vector, percentage
bathy
a numeric vector, m
bs25
a numeric vector, dB
bs10
a numeric vector, dB
bs11
a numeric vector, dB
bs12
a numeric vector, dB
bs13
a numeric vector, dB
bs14
a numeric vector, dB
bs15
a numeric vector, dB
bs16
a numeric vector, dB
bs17
a numeric vector, dB
bs18
a numeric vector, dB
bs19
a numeric vector, dB
bs20
a numeric vector, dB
bs21
a numeric vector, dB
bs22
a numeric vector, dB
bs23
a numeric vector, dB
bs24
a numeric vector, dB
bs26
a numeric vector, dB
bs27
a numeric vector, dB
bs28
a numeric vector, dB
bs29
a numeric vector, dB
bs30
a numeric vector, dB
bs31
a numeric vector, dB
bs32
a numeric vector, dB
bs33
a numeric vector, dB
bs34
a numeric vector, dB
bs35
a numeric vector, dB
bs36
a numeric vector, dB
bs_o
a numeric vector, dB
bs_homo_o
a numeric vector
bs_entro_o
a numeric vector, no unit
bs_var_o
a numeric vector, dB^2
bs_lmi_o
a numeric vector
bathy_o
a numeric vector, m
bathy_lmi_o
a numeric vector
tpi_o
a numeric vector, no unit
slope_o
a numeric vector
plan_cur_o
a numeric vector
prof_cur_o
a numeric vector
relief_o
a numeric vector
rugosity_o
a numeric vector
dist.coast
a numeric vector, m
rugosity3
a numeric vector
rugosity5
a numeric vector
rugosity7
a numeric vector
tpi3
a numeric vector, no unit
tpi5
a numeric vector, no unit
tpi7
a numeric vector, no unit
bathy_lmi3
a numeric vector
bathy_lmi5
a numeric vector
bathy_lmi7
a numeric vector
plan_curv3
a numeric vector
plan_curv5
a numeric vector
plan_curv7
a numeric vector
relief_3
a numeric vector
relief_5
a numeric vector
relief_7
a numeric vector
slope3
a numeric vector
slope5
a numeric vector
slope7
a numeric vector
prof_cur3
a numeric vector
prof_cur5
a numeric vector
prof_cur7
a numeric vector
entro3
a numeric vector, no unit
entro5
a numeric vector, no unit
entro7
a numeric vector, no unit
homo3
a numeric vector
homo5
a numeric vector
homo7
a numeric vector
var3
a numeric vector, dB^2
var5
a numeric vector, dB^2
var7
a numeric vector, dB^2
bs_lmi3
a numeric vector
bs_lmi5
a numeric vector
bs_lmi7
a numeric vector
Details
For details, please see the source. This dataset was published as an appendix of the paper listed in the source. Where the long and lat were reprojected to easting and northing.
Source
see Appendix A-D. Supplementary data at: "http://dx.doi.org/10.1016/j.envsoft.2017.07.016."
References
Li, J., B. Alvarez, J. Siwabessy, M. Tran, Z. Huang, R. Przeslawski, L. Radke, F. Howard, and S. Nichol. 2017. Application of random forest, generalised linear model and their hybrid methods with geostatistical techniques to count data: Predicting sponge species richness. Environmental Modelling & Software, 97: 112-129.