glskrigepred {spm2} | R Documentation |
Generate spatial predictions using the hybrid method of generalized least squares ('gls') and kriging ('krige') ('glskrige')
Description
This function is for generating spatial predictions using the hybrid method of 'gls' and 'krige' (glskrige).
Usage
glskrigepred(
model = var1 ~ 1,
longlat,
trainxy,
predx,
y,
longlatpredx,
corr.args = NULL,
weights = NULL,
transformation = "none",
delta = 1,
formula.krige = res1 ~ 1,
vgm.args = c("Sph"),
anis = c(0, 1),
alpha = 0,
block = 0,
beta,
nmaxkrige = 12,
...
)
Arguments
model |
a formula defining the response variable and predictive variables. |
longlat |
a dataframe contains longitude and latitude of point samples. |
trainxy |
a dataframe contains longitude (long), latitude (lat), predictive variables and the response variable of point samples. That is, the location information must be names as 'long' and 'lat'. |
predx |
a dataframe or matrix contains columns of predictive variables for the grids to be predicted. |
y |
a vector of the response variable in the formula, that is, the left part of the formula. |
longlatpredx |
a dataframe contains longitude and latitude of point locations (i.e., the centers of grids) to be predicted. The location information must be named as 'long' and 'lat'. |
corr.args |
arguments for 'correlation' in 'gls'. See '?corClasses' in 'nlme' for details. By default, "NULL" is used. When "NULL" is used, then 'gls' is actually performing 'lm'. |
weights |
describing the within-group heteroscedasticity structure. Defaults to "NULL", corresponding to homoscedastic errors. See '?gls' in 'nlme' for details. |
transformation |
transform the residuals of 'gls' to normalize the data; can be "sqrt" for square root, "arcsine" for arcsine, "log" or "none" for non transformation. By default, "none" is used. |
delta |
numeric; to avoid log(0) in the log transformation. The default is 1. |
formula.krige |
formula defining the response vector and (possible) regressor. an object (i.e., 'variogram.formula') for 'variogram' or a formula for 'krige'. see 'variogram' and 'krige' in 'gstat' for details. |
vgm.args |
arguments for 'vgm', e.g. variogram model of response variable and anisotropy parameters. see 'vgm' in 'gstat' for details. By default, "Sph" is used. |
anis |
anisotropy parameters: see notes 'vgm' in 'gstat' for details. |
alpha |
direction in plane (x,y). see variogram in 'gstat' for details. |
block |
block size. see 'krige' in 'gstat' for details. |
beta |
for simple kriging. see 'krige' in 'gstat' for details. |
nmaxkrige |
for a local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used. |
... |
other arguments passed on to 'gls' and 'krige'. |
Value
A dataframe of longitude, latitude, and predictions.
Author(s)
Jin Li
References
Pinheiro, J. C. and D. M. Bates (2000). Mixed-Effects Models in S and S-PLUS. New York, Springer.
Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Computers & Geosciences, 30: 683-691.
Examples
library(spm)
library(nlme)
data(petrel)
data(petrel.grid)
gravel <- petrel[, c(1, 2, 6:9, 5)]
longlat <- petrel[, c(1, 2)]
range1 <- 0.8
nugget1 <- 0.5
model <- log(gravel + 1) ~ long + lat + bathy + dist + I(long^2) + I(lat^2) +
I(lat^3) + I(bathy^2) + I(bathy^3) + I(dist^2) + I(dist^3) + I(relief^2) + I(relief^3)
y <- log(gravel[, 7] +1)
glskrigepred1 <- glskrigepred(model = model, longlat = longlat, trainxy = gravel,
predx = petrel.grid, y = y, longlatpredx = petrel.grid[, c(1:2)],
transformation = "none", formula.krige = res1 ~ 1,
vgm.args = "Sph", nmaxkrige = 12, corr.args = corSpher(c(range1, nugget1),
form = ~ lat + long, nugget = TRUE))
names(glskrigepred1)
# Back transform 'glskrigepred$predictions' to generate the final predictions
glskrige.predictions <- exp(glskrigepred1$predictions) - 1
range(glskrige.predictions)