glskrigeidwpred {spm2} | R Documentation |
Generate spatial predictions using the hybrid methods of generalised least squares ('gls'), 'kriging' and inverse distance weighted ('IDW')
Description
This function is for generating spatial predictions using the hybrid methods of 'gls', 'kriging' and 'IDW', including all methods implemented in 'glskrigeidwcv'.
Usage
glskrigeidwpred(
model = var1 ~ 1,
longlat,
trainxy,
predx,
y,
longlatpredx,
corr.args = NULL,
weights = NULL,
transformation = "none",
delta = 1,
formula.krige = res1 ~ 1,
vgm.args = c("Sph"),
anis = c(0, 1),
alpha = 0,
block = 0,
beta,
nmaxkrige = 12,
idp = 2,
nmaxidw = 12,
hybrid.parameter = 2,
lambda = 1,
...
)
Arguments
model |
a formula defining the response variable and predictive variables. |
longlat |
a dataframe contains longitude and latitude of point samples. |
trainxy |
a dataframe contains longitude (long), latitude (lat), predictive variables and the response variable of point samples. That is, the location information must be names as 'long' and 'lat'. |
predx |
a dataframe or matrix contains columns of predictive variables for the grids to be predicted. |
y |
a vector of the response variable in the formula, that is, the left part of the formula. |
longlatpredx |
a dataframe contains longitude and latitude of point locations (i.e., the centers of grids) to be predicted. The location information must be named as 'long' and 'lat'. |
corr.args |
arguments for 'correlation' in 'gls'. See '?corClasses' in 'nlme' for details. By default, "NULL" is used. When "NULL" is used, then 'gls' is actually performing 'lm'. |
weights |
describing the within-group heteroscedasticity structure. Defaults to "NULL", corresponding to homoscedastic errors. See '?gls' in 'nlme' for details. |
transformation |
transform the residuals of 'gls' to normalise the data for 'krige'; can be "sqrt" for square root, "arcsine" for arcsine, "log" or "none" for non transformation. By default, "none" is used. |
delta |
numeric; to avoid log(0) in the log transformation. The default is 1. |
formula.krige |
formula defining the response vector and (possible) regressor. an object (i.e., 'variogram.formula') for 'variogram' or a formula for 'krige'. see 'variogram' and 'krige' in 'gstat' for details. |
vgm.args |
arguments for 'vgm', e.g. variogram model of response variable and anisotropy parameters. see 'vgm' in 'gstat' for details. By default, "Sph" is used. |
anis |
anisotropy parameters: see notes 'vgm' in 'gstat' for details. |
alpha |
direction in plane (x,y). see variogram in 'gstat' for details. |
block |
block size. see 'krige' in 'gstat' for details. |
beta |
for simple kriging. see 'krige' in 'gstat' for details. |
nmaxkrige |
for a local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used. |
idp |
a numeric number specifying the inverse distance weighting power. |
nmaxidw |
for a local predicting: the number of nearest observations that should be used for a prediction or simulation, where nearest is defined in terms of the space of the spatial locations. By default, 12 observations are used. |
hybrid.parameter |
the default is 2 that is for 'glskrigeglsidw'; for 'glsglskrigeglsidw', it needs to be 3. |
lambda |
ranging from 0 to 2; the default is 1 for 'glskrigeglsidw' and 'glsglskrigeglsidw'; and if it is < 1, more weight is placed on 'krige', otherwise more weight is placed on 'idw'; and if it is 0, 'idw' is not considered and the resultant methods is 'glskrige' when the default 'hybrid.parameter' is used; and if it is 2, then the resultant method is 'glsidw' when the default 'hybrid.parameter' is used. |
... |
other arguments passed on to 'gls', 'krige' and 'gstat'. |
Value
A dataframe of longitude, latitude, and predictions.
Author(s)
Jin Li
References
Pinheiro, J. C. and D. M. Bates (2000). Mixed-Effects Models in S and S-PLUS. New York, Springer.
Pebesma, E.J., 2004. Multivariable geostatistics in S: the gstat package. Computers & Geosciences, 30: 683-691.
Examples
library(spm)
library(nlme)
data(petrel)
data(petrel.grid)
gravel <- petrel[, c(1, 2, 6:9, 5)]
longlat <- petrel[, c(1, 2)]
range1 <- 0.8
nugget1 <- 0.5
model <- log(gravel + 1) ~ long + lat + bathy + dist + I(long^2) + I(lat^2) +
I(lat^3) + I(bathy^2) + I(bathy^3) + I(dist^2) + I(dist^3) + I(relief^2) + I(relief^3)
y <- log(gravel[, 7] +1)
glskrigeidwpred1 <- glskrigeidwpred(model = model, longlat = longlat, trainxy = gravel,
predx = petrel.grid, y = y, longlatpredx = petrel.grid[, c(1:2)],
transformation = "none", formula.krige = res1 ~ 1, vgm.args = "Sph", nmaxkrige = 12,
idp = 2, nmaxidw = 12, corr.args = corSpher(c(range1, nugget1),
form = ~ lat + long, nugget = TRUE))
names(glskrigeidwpred1)
# Back transform 'glskrigeidwpred$predictions' to generate the final predictions
glskrigeidw.predictions <- exp(glskrigeidwpred1$predictions) - 1
range(glskrigeidw.predictions)