Kriging Models using the 'libKriging' Library


[Up] [Top]

Documentation for package ‘rlibkriging’ version 0.8-0.1

Help Pages

A C F K L N P S T U V X Y misc

-- A --

abline(v Compute Log-Likelihood of NoiseKriging Model
as.km Coerce an Object into a 'km' Object
as.km-method Coerce a 'Kriging' object into the '"km"' class of the 'DiceKriging' package.
as.km.Kriging Coerce a 'Kriging' object into the '"km"' class of the 'DiceKriging' package.
as.km.NoiseKriging Coerce a 'NoiseKriging' object into the '"km"' class of the 'DiceKriging' package.
as.km.NuggetKriging Coerce a 'NuggetKriging' object into the '"km"' class of the 'DiceKriging' package.
as.list-method Coerce a 'Kriging' Object into a List
as.list-method Coerce a 'NoiseKriging' Object into a List
as.list-method Coerce a 'NuggetKriging' Object into a List
as.list.Kriging Coerce a 'Kriging' Object into a List
as.list.NoiseKriging Coerce a 'NoiseKriging' Object into a List
as.list.NuggetKriging Coerce a 'NuggetKriging' Object into a List
as.matrix(runif(10)) Compute Log-Likelihood of NoiseKriging Model

-- C --

cbind(theta,sigma20))$logLikelihood Compute Log-Likelihood of NoiseKriging Model
cbind(theta0,sigma2))$logLikelihood Compute Log-Likelihood of NoiseKriging Model
col Compute Log-Likelihood of NoiseKriging Model
contour(t,s2,matrix(ncol=length(s2),ll(expand.grid(t,s2))),xlab="theta",ylab="sigma2") Compute Log-Likelihood of NoiseKriging Model
copy Duplicate object.
copy-method Duplicate a Kriging Model
copy-method Duplicate a NoiseKriging Model
copy-method Duplicate a NuggetKriging Model
copy.Kriging Duplicate a Kriging Model
copy.NoiseKriging Duplicate a NoiseKriging Model
copy.NuggetKriging Duplicate a NuggetKriging Model
cos(7 Compute Log-Likelihood of NoiseKriging Model

-- F --

f Compute Log-Likelihood of NoiseKriging Model
f(X) Compute Log-Likelihood of NoiseKriging Model
fit Fit model on data.
fit.Kriging Fit 'Kriging' object on given data.
fit.NoiseKriging Fit 'NoiseKriging' object on given data.
fit.NuggetKriging Fit 'NuggetKriging' object on given data.
function(sigma2) Compute Log-Likelihood of NoiseKriging Model
function(theta) Compute Log-Likelihood of NoiseKriging Model
function(theta_sigma2) Compute Log-Likelihood of NoiseKriging Model
function(x) Compute Log-Likelihood of NoiseKriging Model

-- K --

k Compute Log-Likelihood of NoiseKriging Model
k$sigma2() Compute Log-Likelihood of NoiseKriging Model
k$sigma2(), Compute Log-Likelihood of NoiseKriging Model
k$theta() Compute Log-Likelihood of NoiseKriging Model
k$theta(), Compute Log-Likelihood of NoiseKriging Model
kernel Compute Log-Likelihood of NoiseKriging Model
KM Create an 'KM' Object
KM-class S4 class for Kriging Models Extending the '"km"' Class
Kriging Create an object with S3 class '"Kriging"' using the 'libKriging' library.

-- L --

leaveOneOut Compute Leave-One-Out
leaveOneOut-method Get leaveOneOut of Kriging Model
leaveOneOut.Kriging Get leaveOneOut of Kriging Model
leaveOneOutFun Leave-One-Out function
leaveOneOutFun-method Compute Leave-One-Out (LOO) error for an object with S3 class '"Kriging"' representing a kriging model.
leaveOneOutFun.Kriging Compute Leave-One-Out (LOO) error for an object with S3 class '"Kriging"' representing a kriging model.
leaveOneOutVec Leave-One-Out vector
leaveOneOutVec-method Compute Leave-One-Out (LOO) vector error for an object with S3 class '"Kriging"' representing a kriging model.
leaveOneOutVec.Kriging Compute Leave-One-Out (LOO) vector error for an object with S3 class '"Kriging"' representing a kriging model.
length.out Compute Log-Likelihood of NoiseKriging Model
ll Compute Log-Likelihood of NoiseKriging Model
ll_sigma2 Compute Log-Likelihood of NoiseKriging Model
ll_theta Compute Log-Likelihood of NoiseKriging Model
load Load any Kriging Model from a file storage.
load.Kriging Load a Kriging Model from a file storage
load.NoiseKriging Load a NoiseKriging Model from a file storage
load.NuggetKriging Load a NuggetKriging Model from a file storage
logLikelihood Compute Log-Likelihood
logLikelihood-method Get Log-Likelihood of Kriging Model
logLikelihood-method Get logLikelihood of NoiseKriging Model
logLikelihood-method Get logLikelihood of NuggetKriging Model
logLikelihood.Kriging Get Log-Likelihood of Kriging Model
logLikelihood.NoiseKriging Get logLikelihood of NoiseKriging Model
logLikelihood.NuggetKriging Get logLikelihood of NuggetKriging Model
logLikelihoodFun Log-Likelihood function
logLikelihoodFun(k, Compute Log-Likelihood of NoiseKriging Model
logLikelihoodFun-method Compute Log-Likelihood of Kriging Model
logLikelihoodFun-method Compute Log-Likelihood of NoiseKriging Model
logLikelihoodFun-method Compute Log-Likelihood of NuggetKriging Model
logLikelihoodFun.Kriging Compute Log-Likelihood of Kriging Model
logLikelihoodFun.NoiseKriging Compute Log-Likelihood of NoiseKriging Model
logLikelihoodFun.NuggetKriging Compute Log-Likelihood of NuggetKriging Model
logMargPost Compute log-Marginal Posterior
logMargPost-method Get logMargPost of Kriging Model
logMargPost-method Get logMargPost of NuggetKriging Model
logMargPost.Kriging Get logMargPost of Kriging Model
logMargPost.NuggetKriging Get logMargPost of NuggetKriging Model
logMargPostFun log-Marginal Posterior function
logMargPostFun-method Compute the log-marginal posterior of a kriging model, using the prior XXXY.
logMargPostFun-method Compute the log-marginal posterior of a kriging model, using the prior XXXY.
logMargPostFun.Kriging Compute the log-marginal posterior of a kriging model, using the prior XXXY.
logMargPostFun.NuggetKriging Compute the log-marginal posterior of a kriging model, using the prior XXXY.

-- N --

NoiseKM Create an 'NoiseKM' Object
NoiseKM-class S4 class for NoiseKriging Models Extending the '"km"' Class
NoiseKriging Create an object with S3 class '"NoiseKriging"' using the 'libKriging' library.
NoiseKriging(y, Compute Log-Likelihood of NoiseKriging Model
NuggetKM Create an 'NuggetKM' Object
NuggetKM-class S4 class for NuggetKriging Models Extending the '"km"' Class
NuggetKriging Create an object with S3 class '"NuggetKriging"' using the 'libKriging' library.

-- P --

plot(s2, Compute Log-Likelihood of NoiseKriging Model
plot(t, Compute Log-Likelihood of NoiseKriging Model
points(k$theta(),k$sigma2(),col='blue') Compute Log-Likelihood of NoiseKriging Model
predict-method Prediction Method for a 'KM' Object
predict-method Prediction Method for a 'NoiseKM' Object
predict-method Prediction Method for a 'NuggetKM' Object
predict.Kriging Predict from a 'Kriging' object.
predict.NoiseKriging Predict from a 'NoiseKriging' object.
predict.NuggetKriging Predict from a 'NuggetKriging' object.
print(k) Compute Log-Likelihood of NoiseKriging Model
print.Kriging Print the content of a 'Kriging' object.
print.NoiseKriging Print the content of a 'NoiseKriging' object.
print.NuggetKriging Print the content of a 'NuggetKriging' object.

-- S --

s2 Compute Log-Likelihood of NoiseKriging Model
save Save object.
save-method Save a Kriging Model to a file storage
save-method Save a NoiseKriging Model to a file storage
save-method Save a NuggetKriging Model to a file storage
save.Kriging Save a Kriging Model to a file storage
save.NoiseKriging Save a NoiseKriging Model to a file storage
save.NuggetKriging Save a NuggetKriging Model to a file storage
seq(from Compute Log-Likelihood of NoiseKriging Model
set.seed(123) Compute Log-Likelihood of NoiseKriging Model
sigma20 Compute Log-Likelihood of NoiseKriging Model
simulate-method Simulation from a 'KM' Object
simulate-method Simulation from a 'NoiseKM' Object
simulate-method Simulation from a 'NuggetKM' Object
simulate.Kriging Simulation from a 'Kriging' model object.
simulate.NoiseKriging Simulation from a 'NoiseKriging' model object.
simulate.NuggetKriging Simulation from a 'NuggetKriging' model object.

-- T --

t Compute Log-Likelihood of NoiseKriging Model
theta0 Compute Log-Likelihood of NoiseKriging Model
theta_sigma2)$logLikelihood Compute Log-Likelihood of NoiseKriging Model
to Compute Log-Likelihood of NoiseKriging Model
type Compute Log-Likelihood of NoiseKriging Model

-- U --

update-method Update a 'KM' Object with New Points
update-method Update a 'NoiseKM' Object with New Points
update-method Update a 'NuggetKM' Object with New Points
update.Kriging Update a 'Kriging' model object with new points
update.NoiseKriging Update a 'NoiseKriging' model object with new points
update.NuggetKriging Update a 'NuggetKriging' model object with new points

-- V --

Vectorize(ll_sigma2)(s2), Compute Log-Likelihood of NoiseKriging Model
Vectorize(ll_theta)(t), Compute Log-Likelihood of NoiseKriging Model

-- X --

X Compute Log-Likelihood of NoiseKriging Model
x) Compute Log-Likelihood of NoiseKriging Model
X, Compute Log-Likelihood of NoiseKriging Model
X/10 Compute Log-Likelihood of NoiseKriging Model
x^5 Compute Log-Likelihood of NoiseKriging Model

-- Y --

y Compute Log-Likelihood of NoiseKriging Model

-- misc --

"blue") Compute Log-Likelihood of NoiseKriging Model
"matern3_2") Compute Log-Likelihood of NoiseKriging Model
'l') Compute Log-Likelihood of NoiseKriging Model
(1 Compute Log-Likelihood of NoiseKriging Model
(sin(12 Compute Log-Likelihood of NoiseKriging Model
(X/10)^2, Compute Log-Likelihood of NoiseKriging Model
* Compute Log-Likelihood of NoiseKriging Model
*rnorm(nrow(X)) Compute Log-Likelihood of NoiseKriging Model
+ Compute Log-Likelihood of NoiseKriging Model
- Compute Log-Likelihood of NoiseKriging Model
/ Compute Log-Likelihood of NoiseKriging Model
0.001, Compute Log-Likelihood of NoiseKriging Model
0.7) Compute Log-Likelihood of NoiseKriging Model
1 Compute Log-Likelihood of NoiseKriging Model
1, Compute Log-Likelihood of NoiseKriging Model
101) Compute Log-Likelihood of NoiseKriging Model
2 Compute Log-Likelihood of NoiseKriging Model
2, Compute Log-Likelihood of NoiseKriging Model
31) Compute Log-Likelihood of NoiseKriging Model
<- Compute Log-Likelihood of NoiseKriging Model
= Compute Log-Likelihood of NoiseKriging Model