simulate.NoiseKriging {rlibkriging} | R Documentation |
Simulation from a NoiseKriging
model object.
Description
This method draws paths of the stochastic process at new input points conditional on the values at the input points used in the fit.
Usage
## S3 method for class 'NoiseKriging'
simulate(object, nsim = 1, seed = 123, x, ...)
Arguments
object |
S3 NoiseKriging object. |
nsim |
Number of simulations to perform. |
seed |
Random seed used. |
x |
Points in model input space where to simulate. |
... |
Ignored. |
Value
a matrix with length(x)
rows and nsim
columns containing the simulated paths at the inputs points
given in x
.
Note
The names of the formal arguments differ from those of the
simulate
methods for the S4 classes "km"
and
"KM"
. The formal x
corresponds to
newdata
. These names are chosen Python and
Octave interfaces to libKriging.
Author(s)
Yann Richet yann.richet@irsn.fr
Examples
f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + X/10 * rnorm(nrow(X))
points(X, y, col = "blue")
k <- NoiseKriging(y, (X/10)^2, X, kernel = "matern3_2")
x <- seq(from = 0, to = 1, length.out = 101)
s <- simulate(k, nsim = 3, x = x)
lines(x, s[ , 1], col = "blue")
lines(x, s[ , 2], col = "blue")
lines(x, s[ , 3], col = "blue")
[Package rlibkriging version 0.8-0.1 Index]