| simulate.NoiseKriging {rlibkriging} | R Documentation |
Simulation from a NoiseKriging model object.
Description
This method draws paths of the stochastic process at new input points conditional on the values at the input points used in the fit.
Usage
## S3 method for class 'NoiseKriging'
simulate(object, nsim = 1, seed = 123, x, ...)
Arguments
object |
S3 NoiseKriging object. |
nsim |
Number of simulations to perform. |
seed |
Random seed used. |
x |
Points in model input space where to simulate. |
... |
Ignored. |
Value
a matrix with length(x) rows and nsim
columns containing the simulated paths at the inputs points
given in x.
Note
The names of the formal arguments differ from those of the
simulate methods for the S4 classes "km" and
"KM". The formal x corresponds to
newdata. These names are chosen Python and
Octave interfaces to libKriging.
Author(s)
Yann Richet yann.richet@irsn.fr
Examples
f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + X/10 * rnorm(nrow(X))
points(X, y, col = "blue")
k <- NoiseKriging(y, (X/10)^2, X, kernel = "matern3_2")
x <- seq(from = 0, to = 1, length.out = 101)
s <- simulate(k, nsim = 3, x = x)
lines(x, s[ , 1], col = "blue")
lines(x, s[ , 2], col = "blue")
lines(x, s[ , 3], col = "blue")
[Package rlibkriging version 0.8-0.1 Index]