| predict.Kriging {rlibkriging} | R Documentation |
Predict from a Kriging object.
Description
Given "new" input points, the method compute the expectation, variance and (optionnally) the covariance of the corresponding stochastic process, conditional on the values at the input points used when fitting the model.
Usage
## S3 method for class 'Kriging'
predict(object, x, stdev = TRUE, cov = FALSE, deriv = FALSE, ...)
Arguments
object |
S3 Kriging object. |
x |
Input points where the prediction must be computed. |
stdev |
|
cov |
|
deriv |
|
... |
Ignored. |
Value
A list containing the element mean and possibly
stdev and cov.
Note
The names of the formal arguments differ from those of the
predict methods for the S4 classes "km" and
"KM". The formal x corresponds to
newdata, stdev corresponds to se.compute
and cov to cov.compute. These names are chosen
Python and Octave interfaces to libKriging.
Author(s)
Yann Richet yann.richet@irsn.fr
Examples
f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X)
points(X, y, col = "blue", pch = 16)
k <- Kriging(y, X, "matern3_2")
x <-seq(from = 0, to = 1, length.out = 101)
p <- predict(k, x)
lines(x, p$mean, col = "blue")
polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)),
border = NA, col = rgb(0, 0, 1, 0.2))