predict.NoiseKriging {rlibkriging} | R Documentation |
Predict from a NoiseKriging
object.
Description
Given "new" input points, the method compute the expectation, variance and (optionnally) the covariance of the corresponding stochastic process, conditional on the values at the input points used when fitting the model.
Usage
## S3 method for class 'NoiseKriging'
predict(object, x, stdev = TRUE, cov = FALSE, deriv = FALSE, ...)
Arguments
object |
S3 NoiseKriging object. |
x |
Input points where the prediction must be computed. |
stdev |
|
cov |
|
deriv |
|
... |
Ignored. |
Value
A list containing the element mean
and possibly
stdev
and cov
.
Note
The names of the formal arguments differ from those of the
predict
methods for the S4 classes "km"
and
"KM"
. The formal x
corresponds to
newdata
, stdev
corresponds to se.compute
and cov
to cov.compute
. These names are chosen
Python and Octave interfaces to libKriging.
Author(s)
Yann Richet yann.richet@irsn.fr
Examples
f <- function(x) 1 - 1 / 2 * (sin(12 * x) / (1 + x) + 2 * cos(7 * x) * x^5 + 0.7)
plot(f)
set.seed(123)
X <- as.matrix(runif(10))
y <- f(X) + X/10 * rnorm(nrow(X))
points(X, y, col = "blue", pch = 16)
k <- NoiseKriging(y, (X/10)^2, X, "matern3_2")
x <-seq(from = 0, to = 1, length.out = 101)
p <- predict(k, x)
lines(x, p$mean, col = "blue")
polygon(c(x, rev(x)), c(p$mean - 2 * p$stdev, rev(p$mean + 2 * p$stdev)),
border = NA, col = rgb(0, 0, 1, 0.2))