| maxLik-package | Maximum Likelihood Estimation | 
| activePar | free parameters under maximization | 
| activePar.default | free parameters under maximization | 
| AIC.maxLik | Methods for the various standard functions | 
| bread | Bread for Sandwich Estimator | 
| bread.maxLik | Bread for Sandwich Estimator | 
| coef.maxim | Methods for the various standard functions | 
| coef.maxLik | Methods for the various standard functions | 
| coef.summary.maxLik | summary the Maximum-Likelihood estimation | 
| compareDerivatives | function to compare analytic and numeric derivatives | 
| condiNumber | Print matrix condition numbers column-by-column | 
| condiNumber.default | Print matrix condition numbers column-by-column | 
| condiNumber.maxLik | Print matrix condition numbers column-by-column | 
| confint | confint method for maxLik objects | 
| confint.maxLik | confint method for maxLik objects | 
| estfun | Extract Gradients Evaluated at each Observation | 
| estfun.maxLik | Extract Gradients Evaluated at each Observation | 
| fnSubset | Call fnFull with variable and fixed parameters | 
| glance.maxLik | tidy and glance methods for maxLik objects | 
| gradient | Extract Gradients Evaluated at each Observation | 
| gradient.maxim | Extract Gradients Evaluated at each Observation | 
| hessian | Hessian matrix | 
| hessian.default | Hessian matrix | 
| logLik.maxLik | Return the log likelihood value | 
| logLik.summary.maxLik | Return the log likelihood value | 
| maxAdam | Stochastic Gradient Ascent | 
| maxBFGS | BFGS, conjugate gradient, SANN and Nelder-Mead Maximization | 
| maxBFGSR | Newton- and Quasi-Newton Maximization | 
| maxBHHH | Newton- and Quasi-Newton Maximization | 
| maxCG | BFGS, conjugate gradient, SANN and Nelder-Mead Maximization | 
| maxControl | Class '"MaxControl"' | 
| MaxControl-class | Class '"MaxControl"' | 
| maxControl-method | Class '"MaxControl"' | 
| maximType | Type of Minimization/Maximization | 
| maximType.default | Type of Minimization/Maximization | 
| maximType.maxim | Type of Minimization/Maximization | 
| maximType.MLEstimate | Type of Minimization/Maximization | 
| maxLik | Maximum likelihood estimation | 
| maxNM | BFGS, conjugate gradient, SANN and Nelder-Mead Maximization | 
| maxNR | Newton- and Quasi-Newton Maximization | 
| maxSANN | BFGS, conjugate gradient, SANN and Nelder-Mead Maximization | 
| maxSGA | Stochastic Gradient Ascent | 
| maxValue | Function value at maximum | 
| maxValue.maxim | Function value at maximum | 
| nIter | Return number of iterations for iterative models | 
| nIter.default | Return number of iterations for iterative models | 
| nObs.maxLik | Number of Observations | 
| nParam.maxim | Number of model parameters | 
| numericGradient | Functions to Calculate Numeric Derivatives | 
| numericHessian | Functions to Calculate Numeric Derivatives | 
| numericNHessian | Functions to Calculate Numeric Derivatives | 
| objectiveFn | Optimization Objective Function | 
| objectiveFn.maxim | Optimization Objective Function | 
| print.maxLik | Maximum likelihood estimation | 
| print.summary.maxim | Summary method for maximization | 
| returnCode | Success or failure of the optimization | 
| returnCode.default | Success or failure of the optimization | 
| returnCode.maxLik | Success or failure of the optimization | 
| returnMessage | Success or failure of the optimization | 
| returnMessage.default | Success or failure of the optimization | 
| returnMessage.maxim | Success or failure of the optimization | 
| returnMessage.maxLik | Success or failure of the optimization | 
| show-method | Class '"MaxControl"' | 
| stdEr.maxLik | Methods for the various standard functions | 
| storedParameters | Return the stored values of optimization | 
| storedParameters.maxim | Return the stored values of optimization | 
| storedValues | Return the stored values of optimization | 
| storedValues.maxim | Return the stored values of optimization | 
| summary.maxim | Summary method for maximization | 
| summary.maxLik | summary the Maximum-Likelihood estimation | 
| sumt | Equality-constrained optimization | 
| tidy.maxLik | tidy and glance methods for maxLik objects | 
| vcov.maxLik | Variance Covariance Matrix of maxLik objects |