| summary.maxLik {maxLik} | R Documentation | 
summary the Maximum-Likelihood estimation
Description
Summary the Maximum-Likelihood estimation including standard errors and t-values.
Usage
## S3 method for class 'maxLik'
summary(object, eigentol=1e-12, ... )
## S3 method for class 'summary.maxLik'
coef(object, ...)
Arguments
| object | object of class 'maxLik', or 'summary.maxLik', usually a result from Maximum-Likelihood estimation. | 
| eigentol | The standard errors are only calculated if the ratio of the smallest and largest eigenvalue of the Hessian matrix is less than “eigentol”. Otherwise the Hessian is treated as singular. | 
| ... | currently not used. | 
Value
An object of class 'summary.maxLik' with following components:
- type
- type of maximization. 
- iterations
- number of iterations. 
- code
- code of success. 
- message
- a short message describing the code. 
- loglik
- the loglik value in the maximum. 
- estimate
- numeric matrix, the first column contains the parameter estimates, the second the standard errors, third t-values and fourth corresponding probabilities. 
- fixed
- logical vector, which parameters are treated as constants. 
- NActivePar
- number of free parameters. 
- constraints
- information about the constrained optimization. Passed directly further from - maxim-object.- NULLif unconstrained maximization.
Author(s)
Ott Toomet, Arne Henningsen
See Also
maxLik for maximum likelihood estimation,
confint for confidence intervals, and tidy
and glance for alternative quick summaries of the ML
results. 
Examples
## ML estimation of exponential distribution:
t <- rexp(100, 2)
loglik <- function(theta) log(theta) - theta*t
gradlik <- function(theta) 1/theta - t
hesslik <- function(theta) -100/theta^2
## Estimate with numeric gradient and hessian
a <- maxLik(loglik, start=1, control=list(printLevel=2))
summary(a)
## Estimate with analytic gradient and hessian
a <- maxLik(loglik, gradlik, hesslik, start=1, control=list(printLevel=2))
summary(a)