condiNumber {maxLik} | R Documentation |
Print matrix condition numbers column-by-column
Description
This function prints the condition number of a matrix while adding
columns one-by-one. This is useful for testing multicollinearity and
other numerical problems. It is a generic function with a default
method, and a method for maxLik
objects.
Usage
condiNumber(x, ...)
## Default S3 method:
condiNumber(x, exact = FALSE, norm = FALSE,
printLevel=print.level, print.level=1, digits = getOption( "digits" ), ... )
## S3 method for class 'maxLik'
condiNumber(x, ...)
Arguments
x |
numeric matrix, condition numbers of which are to be printed |
exact |
logical, should condition numbers be exact or
approximations (see |
norm |
logical, whether the columns should be normalised to have unit norm |
printLevel |
numeric, positive value will output the numbers during the calculations. Useful for interactive work. |
print.level |
same as ‘printLevel’, for backward compatibility |
digits |
minimal number of significant digits to print
(only relevant if argument |
... |
Further arguments to |
Details
Statistical model often fail because of a high correlation between the explanatory variables in the linear index (multicollinearity) or because the evaluated maximum of a non-linear model is virtually flat. In both cases, the (near) singularity of the related matrices may help to understand the problem.
condiNumber
inspects the matrices column-by-column and
indicates which variables lead to a jump in the condition
number (cause singularity).
If the matrix column name does not immediately indicate the
problem, one may run an OLS model by estimating this column
using all the previous columns as explanatory variables. Those
columns that explain almost all the variation in the current one will
have very high
t
-values.
Value
Invisible vector of condition numbers by column. If the start values
for maxLik
are named, the condition numbers are named
accordingly.
Author(s)
Ott Toomet
References
Greene, W. (2012): Econometrics Analysis, 7th edition, p. 130.
See Also
Examples
set.seed(0)
## generate a simple nearly multicollinear dataset
x1 <- runif(100)
x2 <- runif(100)
x3 <- x1 + x2 + 0.000001*runif(100) # this is virtually equal to x1 + x2
x4 <- runif(100)
y <- x1 + x2 + x3 + x4 + rnorm(100)
m <- lm(y ~ -1 + x1 + x2 + x3 + x4)
print(summary(m)) # note the outlandish estimates and standard errors
# while R^2 is 0.88. This suggests multicollinearity
condiNumber(model.matrix(m)) # note the value 'explodes' at x3
## we may test the results further:
print(summary(lm(x3 ~ -1 + x1 + x2)))
# Note the extremely high t-values and R^2: x3 is (almost) completely
# explained by x1 and x2