| summary.maxim {maxLik} | R Documentation | 
Summary method for maximization
Description
Summarizes the general maximization results in a way that does not assume the function is log-likelihood.
Usage
## S3 method for class 'maxim'
summary( object, hessian=FALSE, unsucc.step=FALSE, ... )
## S3 method for class 'summary.maxim'
print(x,
                              max.rows=getOption("max.rows", 20),
                              max.cols=getOption("max.cols", 7),
                              ... )
Arguments
| object | optimization result, object of class
 | 
| hessian | logical, whether to display Hessian matrix. | 
| unsucc.step | logical, whether to describe last unsuccesful step
if  | 
| x | object of class  | 
| max.rows | maximum number of rows to be printed. This applies to the resulting coefficients (as those are printed as a matrix where the other column is the gradient), and to the Hessian if requested. | 
| max.cols | maximum number of columns to be printed. Only Hessian output, if requested, uses this argument. | 
| ... | currently not used. | 
Value
Object of class summary.maxim, intended to be printed with
corresponding print method.
Author(s)
Ott Toomet
See Also
maxNR, returnCode,
returnMessage
Examples
## minimize a 2D quadratic function:
f <- function(b) {
  x <- b[1]; y <- b[2];
  val <- -(x - 2)^2 - (y - 3)^2  # concave parabola
  attr(val, "gradient") <- c(-2*x + 4, -2*y + 6)
  attr(val, "hessian") <- matrix(c(-2, 0, 0, -2), 2, 2)
  val
}
## Note that NR finds the minimum of a quadratic function with a single
## iteration.  Use c(0,0) as initial value.  
res <- maxNR( f, start = c(0,0) ) 
summary(res)
summary(res, hessian=TRUE)