Longitudinal Gaussian Process Regression


[Up] [Top]

Documentation for package ‘lgpr’ version 1.2.4

Help Pages

A B C D E F G I K L M N O P Q R S T U V W misc

lgpr-package The 'lgpr' package.

-- A --

add_dis_age Easily add the disease-related age variable to a data frame
add_factor Easily add a categorical covariate to a data frame
add_factor_crossing Add a crossing of two factors to a data frame
adjusted_c_hat Set the GP mean vector, taking TMM or other normalization into account
apply_scaling Apply variable scaling
as.character-method Character representations of different formula objects
as_character Character representations of different formula objects

-- B --

bet Prior definitions

-- C --

clear_postproc S4 generics for lgpfit, lgpmodel, and other objects
clear_postproc-method An S4 class to represent the output of the 'lgp' function
component_info S4 generics for lgpfit, lgpmodel, and other objects
component_info-method An S4 class to represent an additive GP model
component_names S4 generics for lgpfit, lgpmodel, and other objects
component_names-method An S4 class to represent analytically computed predictive distributions (conditional on hyperparameters) of an additive GP model
component_names-method An S4 class to represent input for kernel matrix computations
component_names-method An S4 class to represent prior or posterior draws from an additive function distribution.
component_names-method An S4 class to represent the output of the 'lgp' function
component_names-method An S4 class to represent an additive GP model
contains_postproc S4 generics for lgpfit, lgpmodel, and other objects
contains_postproc-method An S4 class to represent the output of the 'lgp' function
covariate_info S4 generics for lgpfit, lgpmodel, and other objects
covariate_info-method An S4 class to represent an additive GP model
create_model Create a model
create_model.covs_and_comps Parse the covariates and model components from given data and formula
create_model.formula Create a model formula
create_model.likelihood Parse the response variable and its likelihood model
create_model.options Parse the given modeling options
create_model.prior Parse given prior
create_plot_df Helper function for plots
create_scaling Create a standardizing transform

-- D --

dinvgamma_stanlike Density and quantile functions of the inverse gamma distribution
draw_pred Draw pseudo-observations from posterior or prior predictive distribution

-- E --

example_fit Quick way to create an example lgpfit, useful for debugging

-- F --

fit_summary Print a fit summary.

-- G --

gam Prior definitions
gam, Prior definitions
GaussianPrediction An S4 class to represent analytically computed predictive distributions (conditional on hyperparameters) of an additive GP model
GaussianPrediction-class An S4 class to represent analytically computed predictive distributions (conditional on hyperparameters) of an additive GP model
get_draws Extract parameter draws from lgpfit or stanfit
get_model S4 generics for lgpfit, lgpmodel, and other objects
get_model-method An S4 class to represent the output of the 'lgp' function
get_pred Extract model predictions and function posteriors
get_stanfit S4 generics for lgpfit, lgpmodel, and other objects
get_stanfit-method An S4 class to represent the output of the 'lgp' function

-- I --

igam Prior definitions
igam, Prior definitions
is_f_sampled S4 generics for lgpfit, lgpmodel, and other objects
is_f_sampled-method An S4 class to represent the output of the 'lgp' function
is_f_sampled-method An S4 class to represent an additive GP model

-- K --

kernel Compute a kernel matrix (covariance matrix)
KernelComputer An S4 class to represent input for kernel matrix computations
KernelComputer-class An S4 class to represent input for kernel matrix computations
kernel_beta Compute a kernel matrix (covariance matrix)
kernel_bin Compute a kernel matrix (covariance matrix)
kernel_cat Compute a kernel matrix (covariance matrix)
kernel_eq Compute a kernel matrix (covariance matrix)
kernel_ns Compute a kernel matrix (covariance matrix)
kernel_varmask Compute a kernel matrix (covariance matrix)
kernel_zerosum Compute a kernel matrix (covariance matrix)

-- L --

lgp Main function of the 'lgpr' package
lgpexpr An S4 class to represent an lgp expression
lgpexpr-class An S4 class to represent an lgp expression
lgpfit An S4 class to represent the output of the 'lgp' function
lgpfit-class An S4 class to represent the output of the 'lgp' function
lgpformula An S4 class to represent an lgp formula
lgpformula-class An S4 class to represent an lgp formula
lgpmodel An S4 class to represent an additive GP model
lgpmodel-class An S4 class to represent an additive GP model
lgpr The 'lgpr' package.
lgprhs An S4 class to represent the right-hand side of an lgp formula
lgprhs-class An S4 class to represent the right-hand side of an lgp formula
lgpscaling An S4 class to represent variable scaling
lgpscaling-class An S4 class to represent variable scaling
lgpsim An S4 class to represent a data set simulated using the additive GP formalism
lgpsim-class An S4 class to represent a data set simulated using the additive GP formalism
lgpterm An S4 class to represent one formula term
lgpterm-class An S4 class to represent one formula term
log_normal Prior definitions
log_normal, Prior definitions

-- M --

model_summary Print a model summary.

-- N --

new_x Create test input points for prediction
normal Prior definitions
normal, Prior definitions
num_components S4 generics for lgpfit, lgpmodel, and other objects
num_components-method An S4 class to represent analytically computed predictive distributions (conditional on hyperparameters) of an additive GP model
num_components-method An S4 class to represent input for kernel matrix computations
num_components-method An S4 class to represent prior or posterior draws from an additive function distribution.
num_components-method An S4 class to represent the output of the 'lgp' function
num_components-method An S4 class to represent an additive GP model
num_evalpoints S4 generics for lgpfit, lgpmodel, and other objects
num_evalpoints-method An S4 class to represent analytically computed predictive distributions (conditional on hyperparameters) of an additive GP model
num_evalpoints-method An S4 class to represent input for kernel matrix computations
num_evalpoints-method An S4 class to represent prior or posterior draws from an additive function distribution.
num_paramsets S4 generics for lgpfit, lgpmodel, and other objects
num_paramsets-method An S4 class to represent analytically computed predictive distributions (conditional on hyperparameters) of an additive GP model
num_paramsets-method An S4 class to represent input for kernel matrix computations
num_paramsets-method An S4 class to represent prior or posterior draws from an additive function distribution.

-- O --

operations Operations on formula terms and expressions
optimize_model Fitting a model

-- P --

parameter_info S4 generics for lgpfit, lgpmodel, and other objects
parameter_info-method An S4 class to represent an additive GP model
param_summary Print a model summary.
plot-method An S4 class to represent the output of the 'lgp' function
plot-method An S4 class to represent a data set simulated using the additive GP formalism
plot_api_c Plot a generated/fit model component
plot_api_g Plot longitudinal data and/or model fit so that each subject/group has their own panel
plot_beta Visualize the distribution of parameter draws
plot_components Visualize all model components
plot_data Vizualizing longitudinal data
plot_draws Visualize the distribution of parameter draws
plot_effect_times Visualize the distribution of parameter draws
plot_f Visualizing model predictions or inferred covariate effects
plot_inputwarp Visualize input warping function with several steepness parameter values
plot_invgamma Plot the inverse gamma-distribution pdf
plot_pred Visualizing model predictions or inferred covariate effects
plot_sim Visualize an lgpsim object (simulated data)
plot_warp Visualize the distribution of parameter draws
postproc S4 generics for lgpfit, lgpmodel, and other objects
postproc-method An S4 class to represent the output of the 'lgp' function
ppc Graphical posterior predictive checks
pred Posterior predictions and function posteriors
Prediction An S4 class to represent prior or posterior draws from an additive function distribution.
Prediction-class An S4 class to represent prior or posterior draws from an additive function distribution.
priors Prior definitions
prior_pred Prior (predictive) sampling
prior_to_num Convert given prior to numeric format

-- Q --

qinvgamma_stanlike Density and quantile functions of the inverse gamma distribution

-- R --

read_proteomics_data Function for reading the built-in proteomics data
relevances Assess component relevances

-- S --

s4_generics S4 generics for lgpfit, lgpmodel, and other objects
sample_model Fitting a model
sample_param_prior Prior (predictive) sampling
select Select relevant components
select.integrate Select relevant components
select_freq Select relevant components
select_freq.integrate Select relevant components
show Printing formula object info using the show generic
show-method An S4 class to represent analytically computed predictive distributions (conditional on hyperparameters) of an additive GP model
show-method An S4 class to represent input for kernel matrix computations
show-method An S4 class to represent prior or posterior draws from an additive function distribution.
show-method An S4 class to represent the output of the 'lgp' function
show-method An S4 class to represent an additive GP model
show-method An S4 class to represent a data set simulated using the additive GP formalism
show-method Printing formula object info using the show generic
sim.create_f Simulate latent function components for longitudinal data analysis
sim.create_x Create an input data frame X for simulated data
sim.create_y Simulate noisy observations
sim.kernels Compute all kernel matrices when simulating data
simulate_data Generate an artificial longitudinal data set
split Split data into training and test sets
split_by_factor Split data into training and test sets
split_data Split data into training and test sets
split_random Split data into training and test sets
split_within_factor Split data into training and test sets
split_within_factor_random Split data into training and test sets
student_t Prior definitions
student_t, Prior definitions

-- T --

testdata_001 A very small artificial test data, used mostly for unit tests
testdata_002 Medium-size artificial test data, used mostly for tutorials

-- U --

uniform Prior definitions
uniform, Prior definitions

-- V --

validate Validate S4 class objects
validate_GaussianPrediction Validate S4 class objects
validate_lgpexpr Validate S4 class objects
validate_lgpfit Validate S4 class objects
validate_lgpformula Validate S4 class objects
validate_lgpscaling Validate S4 class objects
validate_Prediction Validate S4 class objects
var_mask Variance masking function

-- W --

warp_input Input warping function

-- misc --

*-method Operations on formula terms and expressions
+-method Operations on formula terms and expressions