| lgpmodel-class {lgpr} | R Documentation |
An S4 class to represent an additive GP model
Description
An S4 class to represent an additive GP model
Usage
## S4 method for signature 'lgpmodel'
show(object)
## S4 method for signature 'lgpmodel'
parameter_info(object, digits = 3)
## S4 method for signature 'lgpmodel'
component_info(object)
## S4 method for signature 'lgpmodel'
num_components(object)
## S4 method for signature 'lgpmodel'
covariate_info(object)
## S4 method for signature 'lgpmodel'
component_names(object)
## S4 method for signature 'lgpmodel'
is_f_sampled(object)
Arguments
object |
The object for which to apply a class method. |
digits |
number of digits to show for floating point numbers |
Methods (by generic)
-
show(lgpmodel): Print information and summary about the object. Returnsobjectinvisibly. -
parameter_info(lgpmodel): Get a parameter summary (bounds and priors). Returns adata.frame. -
component_info(lgpmodel): Get a data frame with information about each model component. -
num_components(lgpmodel): Get number of model components. Returns a positive integer. -
covariate_info(lgpmodel): Get covariate information. -
component_names(lgpmodel): Get names of model components. -
is_f_sampled(lgpmodel): Determine if inference of the model requires sampling the latent signalf(and its components).
Slots
formulaAn object of class lgpformula
dataThe original unmodified data.
stan_inputThe data to be given as input to
rstan::samplingvar_namesList of variable names grouped by type.
var_scalingsA named list with fields
-
y- Response variable normalization function and its inverse operation. Must be an lgpscaling object. -
x_cont- Continuous covariate normalization functions and their inverse operations. Must be a named list with each element is an lgpscaling object.
-
var_infoA named list with fields
-
x_cat_levels- Names of the levels of categorical covariates before converting from factor to numeric.
-
infoOther info in text format.
sample_fWhether the signal
fis sampled or marginalized.full_priorComplete prior information.