lgpmodel-class {lgpr} | R Documentation |
An S4 class to represent an additive GP model
Description
An S4 class to represent an additive GP model
Usage
## S4 method for signature 'lgpmodel'
show(object)
## S4 method for signature 'lgpmodel'
parameter_info(object, digits = 3)
## S4 method for signature 'lgpmodel'
component_info(object)
## S4 method for signature 'lgpmodel'
num_components(object)
## S4 method for signature 'lgpmodel'
covariate_info(object)
## S4 method for signature 'lgpmodel'
component_names(object)
## S4 method for signature 'lgpmodel'
is_f_sampled(object)
Arguments
object |
The object for which to apply a class method. |
digits |
number of digits to show for floating point numbers |
Methods (by generic)
-
show(lgpmodel)
: Print information and summary about the object. Returnsobject
invisibly. -
parameter_info(lgpmodel)
: Get a parameter summary (bounds and priors). Returns adata.frame
. -
component_info(lgpmodel)
: Get a data frame with information about each model component. -
num_components(lgpmodel)
: Get number of model components. Returns a positive integer. -
covariate_info(lgpmodel)
: Get covariate information. -
component_names(lgpmodel)
: Get names of model components. -
is_f_sampled(lgpmodel)
: Determine if inference of the model requires sampling the latent signalf
(and its components).
Slots
formula
An object of class lgpformula
data
The original unmodified data.
stan_input
The data to be given as input to
rstan::sampling
var_names
List of variable names grouped by type.
var_scalings
A named list with fields
-
y
- Response variable normalization function and its inverse operation. Must be an lgpscaling object. -
x_cont
- Continuous covariate normalization functions and their inverse operations. Must be a named list with each element is an lgpscaling object.
-
var_info
A named list with fields
-
x_cat_levels
- Names of the levels of categorical covariates before converting from factor to numeric.
-
info
Other info in text format.
sample_f
Whether the signal
f
is sampled or marginalized.full_prior
Complete prior information.