priors {lgpr} | R Documentation |
Prior definitions
Description
These use the same parametrizations as defined in the 'Stan' documentation. See the docs for gamma and inverse gamma distributions.
Usage
uniform(square = FALSE)
normal(mu, sigma, square = FALSE)
student_t(nu, square = FALSE)
gam(shape, inv_scale, square = FALSE)
igam(shape, scale, square = FALSE)
log_normal(mu, sigma, square = FALSE)
bet(a, b)
Arguments
square |
is prior for a square-transformed parameter? |
mu |
mean |
sigma |
standard deviation |
nu |
degrees of freedom |
shape |
shape parameter (alpha) |
inv_scale |
inverse scale parameter (beta) |
scale |
scale parameter (beta) |
a |
shape parameter |
b |
shape parameter |
Value
a named list
See Also
Other functions related to the inverse-gamma distribution:
dinvgamma_stanlike()
,
plot_invgamma()
Examples
# Log-normal prior
log_normal(mu = 1, sigma = 1)
# Cauchy prior
student_t(nu = 1)
# Exponential prior with rate = 0.1
gam(shape = 1, inv_scale = 0.1)
# Create a similar priors as in LonGP (Cheng et al., 2019)
# Not recommended, because a lengthscale close to 0 is possible.
a <- log(1) - log(0.1)
log_normal(mu = 0, sigma = a / 2) # for continuous lengthscale
student_t(nu = 4) # for interaction lengthscale
igam(shape = 0.5, scale = 0.005, square = TRUE) # for sigma
[Package lgpr version 1.2.4 Index]