KernelComputer-class {lgpr} | R Documentation |
An S4 class to represent input for kernel matrix computations
Description
An S4 class to represent input for kernel matrix computations
Usage
## S4 method for signature 'KernelComputer'
show(object)
## S4 method for signature 'KernelComputer'
num_components(object)
## S4 method for signature 'KernelComputer'
num_evalpoints(object)
## S4 method for signature 'KernelComputer'
num_paramsets(object)
## S4 method for signature 'KernelComputer'
component_names(object)
Arguments
object |
The object for which to call a class method. |
Methods (by generic)
-
show(KernelComputer)
: Print a summary about the object. -
num_components(KernelComputer)
: Get number of components. -
num_evalpoints(KernelComputer)
: Get number of evaluation points. -
num_paramsets(KernelComputer)
: Get number of parameter sets. -
component_names(KernelComputer)
: Get component names.
Slots
input
Common input (for example parameter values).
K_input
Input for computing kernel matrices between data points (
N
xN
). A list.Ks_input
Input for computing kernel matrices between data and output points (
P
xN
). A list.Kss_input
Input for computing kernel matrices between output points (
P
xP
). A list, empty iffull_covariance=FALSE
.comp_names
Component names (character vector).
full_covariance
Boolean value determining if this can compute full predictive covariance matrices (or just marginal variance at each point).
no_separate_output_points
Boolean value determining if
Ks_input
andKss_input
are the same thing. Using this knowledge can reduce unnecessary computations of kernel matrices.STREAM
external pointer (for calling 'Stan' functions)