| KernelComputer-class {lgpr} | R Documentation |
An S4 class to represent input for kernel matrix computations
Description
An S4 class to represent input for kernel matrix computations
Usage
## S4 method for signature 'KernelComputer'
show(object)
## S4 method for signature 'KernelComputer'
num_components(object)
## S4 method for signature 'KernelComputer'
num_evalpoints(object)
## S4 method for signature 'KernelComputer'
num_paramsets(object)
## S4 method for signature 'KernelComputer'
component_names(object)
Arguments
object |
The object for which to call a class method. |
Methods (by generic)
-
show(KernelComputer): Print a summary about the object. -
num_components(KernelComputer): Get number of components. -
num_evalpoints(KernelComputer): Get number of evaluation points. -
num_paramsets(KernelComputer): Get number of parameter sets. -
component_names(KernelComputer): Get component names.
Slots
inputCommon input (for example parameter values).
K_inputInput for computing kernel matrices between data points (
NxN). A list.Ks_inputInput for computing kernel matrices between data and output points (
PxN). A list.Kss_inputInput for computing kernel matrices between output points (
PxP). A list, empty iffull_covariance=FALSE.comp_namesComponent names (character vector).
full_covarianceBoolean value determining if this can compute full predictive covariance matrices (or just marginal variance at each point).
no_separate_output_pointsBoolean value determining if
Ks_inputandKss_inputare the same thing. Using this knowledge can reduce unnecessary computations of kernel matrices.STREAMexternal pointer (for calling 'Stan' functions)