Hidden Markov Cognitive Diagnosis Models for Learning


[Up] [Top]

Documentation for package ‘hmcdm’ version 2.1.1

Help Pages

hmcdm-package hmcdm: Hidden Markov Cognitive Diagnosis Models for Learning
Design_array Design array
ETAmat Generate ideal response matrix
hmcdm Gibbs sampler for learning models
inv_bijectionvector Convert integer to attribute pattern
L_real_array Observed response times array
OddsRatio Compute item pairwise odds ratio
pp_check.hmcdm Graphical posterior predictive checks for hidden Markov cognitive diagnosis model
print.summary.hmcdm Summarizing Hidden Markov Cognitive Diagnosis Model Fits
Q_list_g Generate a list of Q-matrices for each examinee.
Q_matrix Q-matrix
random_Q Generate random Q matrix
rOmega Generate a random transition matrix for the first order hidden Markov model
sim_alphas Generate attribute trajectories under the specified hidden Markov models
sim_hmcdm Simulate responses from the specified model (entire cube)
sim_RT Simulate item response times based on Wang et al.'s (2018) joint model of response times and accuracy in learning
summary.hmcdm Summarizing Hidden Markov Cognitive Diagnosis Model Fits
Test_order Test block ordering of each test version
Test_versions Subjects' test version
TPmat Generate monotonicity matrix
Y_real_array Observed response accuracy array
_PACKAGE hmcdm: Hidden Markov Cognitive Diagnosis Models for Learning