pp_check.hmcdm {hmcdm} | R Documentation |
Graphical posterior predictive checks for hidden Markov cognitive diagnosis model
Description
pp_check
method for class hmcdm
.
Usage
## S3 method for class 'hmcdm'
pp_check(object, plotfun = "dens_overlay", type = "total_score", ...)
Arguments
object |
a fitted model object of class " |
plotfun |
A character string naming the type of plot. The list of available
plot functions include |
type |
A character string naming the statistic to be used for obtaining posterior predictive distribution plot.
The list of available types include |
... |
Additional arguments |
Value
Plots for checking the posterior predictive distributions. The default Plotfun
"dens_overlay"
plots density of each dataset are overlaid with the distribution of the observed values.
References
Zhang, S., Douglas, J. A., Wang, S. & Culpepper, S. A. (2019) <doi:10.1007/978-3-030-05584-4_24>
See Also
bayesplot::ppc_dens_overlay()
bayesplot::ppc_stat()
bayesplot::ppc_stat_2d()
bayesplot::ppc_scatter_avg()
bayesplot::ppc_error_scatter_avg()
Examples
output_FOHM = hmcdm(Y_real_array,Q_matrix,"DINA_FOHM",Design_array,1000,500)
library(bayesplot)
pp_check(output_FOHM)
pp_check(output_FOHM, plotfun="hist", type="item_mean")