sim_RT {hmcdm} | R Documentation |
Simulate item response times based on Wang et al.'s (2018) joint model of response times and accuracy in learning
Description
Simulate a cube of subjects' response times across time points according to a variant of the logNormal model
Usage
sim_RT(alphas, Q_matrix, Design_array, RT_itempars, taus, phi, G_version)
Arguments
alphas |
An N-by-K-by-T |
Q_matrix |
A J-by-K Q-matrix for the test |
Design_array |
A N-by-J-by-L array indicating whether item j is administered to examinee i at l time point. |
RT_itempars |
A J-by-2 |
taus |
A length N |
phi |
A |
G_version |
An |
Value
A cube
of response times of subjects on each item across time
Examples
N = dim(Design_array)[1]
J = nrow(Q_matrix)
K = ncol(Q_matrix)
L = dim(Design_array)[3]
class_0 <- sample(1:2^K, N, replace = TRUE)
Alphas_0 <- matrix(0,N,K)
mu_thetatau = c(0,0)
Sig_thetatau = rbind(c(1.8^2,.4*.5*1.8),c(.4*.5*1.8,.25))
Z = matrix(rnorm(N*2),N,2)
thetatau_true = Z%*%chol(Sig_thetatau)
thetas_true = thetatau_true[,1]
taus_true = thetatau_true[,2]
G_version = 3
phi_true = 0.8
for(i in 1:N){
Alphas_0[i,] <- inv_bijectionvector(K,(class_0[i]-1))
}
lambdas_true <- c(-2, .4, .055)
Alphas <- sim_alphas(model="HO_joint",
lambdas=lambdas_true,
thetas=thetas_true,
Q_matrix=Q_matrix,
Design_array=Design_array)
RT_itempars_true <- matrix(NA, nrow=J, ncol=2)
RT_itempars_true[,2] <- rnorm(J,3.45,.5)
RT_itempars_true[,1] <- runif(J,1.5,2)
ETAs <- ETAmat(K,J,Q_matrix)
L_sim <- sim_RT(Alphas,Q_matrix,Design_array,RT_itempars_true,taus_true,phi_true,G_version)