sim_alphas {hmcdm} | R Documentation |
Generate attribute trajectories under the specified hidden Markov models
Description
Based on the learning model parameters, create cube of attribute patterns of all subjects across time. Currently available learning models are Higher-order hidden Markov DCM('HO_sep'), Higher-order hidden Markov DCM with learning ability as a random effect('HO_joint'), the simple independent-attribute learning model('indept'), and the first order hidden Markov model('FOHM').
Usage
sim_alphas(
model,
lambdas = NULL,
thetas = NULL,
Q_matrix = NULL,
Design_array = NULL,
taus = NULL,
Omega = NULL,
N = NA_integer_,
L = NA_integer_,
R = NULL,
alpha0 = NULL
)
Arguments
model |
The learning model under which the attribute trajectories are generated. Available options are: 'HO_joint', 'HO_sep', 'indept', 'FOHM'. |
lambdas |
A |
thetas |
A length N |
Q_matrix |
A J-by-K Q-matrix |
Design_array |
A N-by-J-by-L array indicating items administered to examinee n at time point l. |
taus |
A length K |
Omega |
A 2^K-by-2^K |
N |
An |
L |
An |
R |
A K-by-K dichotomous reachability |
alpha0 |
Optional. An N-by-K |
Value
An N-by-K-by-L array
of attribute patterns of subjects at each time point.
Examples
## HO_joint ##
N = nrow(Design_array)
J = nrow(Q_matrix)
K = ncol(Q_matrix)
L = dim(Design_array)[3]
class_0 <- sample(1:2^K, N, replace = TRUE)
Alphas_0 <- matrix(0,N,K)
for(i in 1:N){
Alphas_0[i,] <- inv_bijectionvector(K,(class_0[i]-1))
}
thetas_true = rnorm(N, 0, 1.8)
lambdas_true <- c(-2, .4, .055)
Alphas <- sim_alphas(model="HO_joint",
lambdas=lambdas_true,
thetas=thetas_true,
Q_matrix=Q_matrix,
Design_array=Design_array)
## HO_sep ##
N = dim(Design_array)[1]
J = nrow(Q_matrix)
K = ncol(Q_matrix)
L = dim(Design_array)[3]
class_0 <- sample(1:2^K, N, replace = L)
Alphas_0 <- matrix(0,N,K)
for(i in 1:N){
Alphas_0[i,] <- inv_bijectionvector(K,(class_0[i]-1))
}
thetas_true = rnorm(N)
lambdas_true = c(-1, 1.8, .277, .055)
Alphas <- sim_alphas(model="HO_sep",
lambdas=lambdas_true,
thetas=thetas_true,
Q_matrix=Q_matrix,
Design_array=Design_array)
## indept ##
N = dim(Design_array)[1]
K = dim(Q_matrix)[2]
L = dim(Design_array)[3]
tau <- numeric(K)
for(k in 1:K){
tau[k] <- runif(1,.2,.6)
}
R = matrix(0,K,K)
p_mastery <- c(.5,.5,.4,.4)
Alphas_0 <- matrix(0,N,K)
for(i in 1:N){
for(k in 1:K){
prereqs <- which(R[k,]==1)
if(length(prereqs)==0){
Alphas_0[i,k] <- rbinom(1,1,p_mastery[k])
}
if(length(prereqs)>0){
Alphas_0[i,k] <- prod(Alphas_0[i,prereqs])*rbinom(1,1,p_mastery)
}
}
}
Alphas <- sim_alphas(model="indept", taus=tau, N=N, L=L, R=R)
## FOHM ##
N = dim(Design_array)[1]
K = ncol(Q_matrix)
L = dim(Design_array)[3]
TP <- TPmat(K)
Omega_true <- rOmega(TP)
class_0 <- sample(1:2^K, N, replace = L)
Alphas_0 <- matrix(0,N,K)
for(i in 1:N){
Alphas_0[i,] <- inv_bijectionvector(K,(class_0[i]-1))
}
Alphas <- sim_alphas(model="FOHM", Omega = Omega_true, N=N, L=L)